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Three-Dimensional Modeling of the Solar Active Region∗)
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In this study we developed an extrapolation code based on the MHD relaxation method to reconstruct a three-
dimensional (3D) coronal magnetic field. A 3D magnetic field based on a nonlinear force-free field (NLFFF)
was extrapolated from a photospheric vector-field map. A benchmark test using the semi-analytical solution
introduced by Low & Lou (1990) found that the extrapolated solution were able to well reproduce an original
Low and Lou solution. We then applied the NLFFF extrapolation to solar active region (AR) NOAA 10930. The
energy accumulation region formed by the strong magnetic shear above the polarity inversion line was resultantly
reproduced and this structure is greatly different from the potential field characterized by the minimum energy
state. In this paper we discuss the reliability of our extrapolated field and a relationship between quasi-separatrix
layers (QSLs) and a flare ribbon from the CaII image observed by Hinode/SOT.
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1. Introduction
The source of solar coronal dynamics that show strong

nonlinearity of plasma dynamics is derived from the re-
lease of magnetic energy. Solar flares and coronal mass
ejections (CMEs) in particular are dynamic phenomena in
our heliosphere, and these phenomena cause electromag-
netic disturbance as magnetic substorms and ionospheric
storms in our geo-space. Understanding the trigger mech-
anism and dynamics of solar flares, along with the for-
mation and propagation process of the CMEs, are there-
fore key processes for space weather forecasts. The en-
ergy source of these solar explosions is solar active regions
that are composed of large sunspots as the cross-section of
the strong magnetic flux and have strong magnetic activ-
ity. Therefore, it is first important to understand the 3D
magnetic field in the solar active region. Unfortunately,
3D coronal magnetic fields cannot be directly observed by
state-of-art solar physics satellites and we can only obtain
information on magnetic fields on the photosphere from
the observations. Coronal magnetic fields are widely be-
lieved to satisfy the force-free condition,

∇ × B = αB, (1)

where B is a magnetic field, and α is generally a func-
tion of space, because the magnetic pressure dominant to
the gas pressure of the coronal plasma; i.e, satisfied low
β condition in the solar corona. Therefore, a 3D coronal
magnetic field is demanded in order to satisfy the force-
free condition based on the vector-field data on the bottom
boundary. If parameter α corresponds to zero or a con-
stant value; i.e., a potential field or linear force-free field
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(LFFF), we can easily obtain a 3D coronal magnetic field.
However, parameter α is not a constant value but vari-
able in the space. Therefore, because the equation cannot
be analytically solved derived from inherent nonlinearity,
we developed a numerical code for a nonlinear force-free
field (NLFFF) extrapolated from the photospheric mag-
netic field as a boundary value problem.

In this paper, we first check the reliability of our
NLFFF extrapolation code using the semi-analytical solu-
tion introduced by Low & Lou [1]. Next, we apply our
extrapolation code to NOAA 10930, causing an X3.4 flare,
CMEs and electromagnetic disturbance in our geo-space.
Japan’s solar physics satellite Hinode was able to observe
the solar flare in this active region and provides the vector-
field map obtained from a solar optical telescope(SOT). We
report on the relativity of our NLFFF and discuss the 3D
structure of NOAA 10930.

2. Numerical Method
NLFF extrapolation methods have been proposed by

many researchers [2], and most concepts are as follows.
First the boundary condition is fixed as the vector-field
map obtained from the observation, then the equation is
solved satisfying the force-free condition and searching for
the best-fit solution with the observation. This study em-
ploys the MHD equation neglected the gas pressure, and
gravity under the low β condition.

∂u

∂t
= −(u · ∇) u +

1
ρ

J × B + ν∇2u, (2)

∂B
∂t
= ∇ × (u × B − ηJ) − ∇φ, (3)

J = ∇ × B, (4)
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∂φ

∂t
+ c2

h∇ · B,= −
c2

h

c2
p
φ, (5)

where B is the magnetic flux density, u the velocity, J the
electric current density, ρ the pseudo-density, and φ the
convenient potential, respectively. The pseudo-density is
assumed to be proportional to |B| in order to ease the re-
laxation by equalizing the Alfven speed in space. Equa-
tion (5) was originally introduced for the algorithm for
MHD calculation in [3] in order to avoid deviation from
the solenoidal condition ∇ · B = 0. The non-dimensional
resistivity η is given by a functional

η = η0 + η1
|J × B||u|2
|B| . (6)

The η0 and η1 are uniform resistivity given by 5.0 × 10−5

and 1.0 × 10−3. The second term acts well accelerating the
relaxation to the force-free field, particularly in the weak
field region. The other parameters ch and cp are fixed
to constant values. The length, magnetic field, velocity,
time, and electric current density are normalized by L0, B0,
VA ≡ B0/(μ0ρ0)1/2 τA ≡ L0/VA J0 = B0/μ0L0. The non-
dimensional viscosity ν is set as a constant value. The nu-
merical scheme for this calculation is given by the Runge-
Kutta-Gill scheme with the fourth-order accuracy for the
temporal integral and a central finite difference with the
second-order accuracy for a spatial derivative.

3. 3D Magnetic Structure from
NLFFF

3.1 Case1 : Low & Lou
First, we check the accuracy of our developed code

using the semi-analytical solution introduced by Low &
Lou [1]. This is given as a solution of a Grad-Shafranov
equation, which is analytically and numerically solved.
Figure 1a shows the Low & Lou solution, where the lines
indicate magnetic field lines and the normal component of
the magnetic field is plotted in a color map. We reconstruct
NLFFF only from boundary conditions obtained from the
Low & Lou solution. In this case, all boundary condi-
tions are given by the three components of the magnetic
field obtained from the Low & Lou solution, the velocity
field set to zero at all the boundaries, and a Neumann-type
boundary condition (∂nφ = 0) is applied for the potential
φ at all the boundaries: where ∂n represents the deriva-
tive for normal direction on the surface. Parameters are
set at L0 = 1.0, B0 = 1.0, cp = 0.1, ch = 0.2 and
ν = 1.0 × 10−3. The simulation domain is a rectangular
box spanning (0, 0, 0) < (x, y, z) < (2L0, 2L0, 2L0) and di-
vided by 64 × 64 × 64 grids. An initial condition is given
as a potential field calculated from a normal component of
the magnetic field on all boundaries. Figure 1b shows the
extrapolated magnetic field from the boundary conditions
of the original Low & Lou solution. From these results, the
extrapolated field is almost the same profile as Low & Lou

Fig. 1 (a) The left figure shows the exact solution introduced by
Low & Lou. The red lines indicate the field lines and the
color map shows the normal component of the magnetic
field. (b) The right figure shows the NLFFF extrapolated
from all boundary conditions.

solution. We also calculate En =
1
M

∑
i

{|bi − Bi|/|Bi|} in-

troduced by [2] to estimate quantitative comparison, where
Bi and bi indicate original and extrapolated solutions and
M is a total grid number. As a result, our extrapolated field
reach at 1 − En = 0.95 in the whole numerical box and
1 − En = 0.99 in the half box defined by the solid square
in Fig. 1b. This result indicates NLFFF can be well recon-
structed and small errors are stored near the lateral and top
boundaries. Therefore, if the energy stored region in a so-
lar active region is set on the central part in the numerical
box, we can expect good reconstruction for the most im-
portant part.

3.2 Case2 : AR NOAA10930
Next, we reconstruct the AR NOAA 10930 using the

vector-field (Fig. 2a) obtained from the Hinode satellite by
a Milne-Eddington inversion of FeI lines at 630.15 nm and
630.25 nm and the simulated annealing method to solve
the 180-degree uncertainty [4]. This is observed at 20:30
UT on December 12th corresponding to the six hours be-
fore a flare onset. However, the lateral and top boundaries
cannot be provided since these areas are out of the obser-
vations. Therefore, these boundary conditions are given
by the potential field extrapolated from the line-of-sight of
the magnetic field using a synoptic map observed by The
Michelson Doppler Imager on the Solar and Heliospheric
Observatory (SOHO/MDI). The critical difference between
Hinode/SP and SOHO/MDI data is that Hinode can provide
the three components of the magnetic field on the pho-
tosphere, whereas the SOHO/MDI provides only line-of-
sight components. The tangential components on the pho-
tosphere are important for reconstructing the energy stored
field, therefore Hinode/SP data plays an important role for
reconstructing a region where a flare occurs. After ad-
justing the total magnetic flux between the bottom bound-
ary (Hinode/SOT + SOHO/MDI) and others (SOHO/MDI),
the potential field given as an initial condition is recalcu-
lated from normal component of the magnetic field on all
boundaries, and an iteration is performed until the mag-
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Fig. 2 (a) The normal component of the magnetic field corre-
sponding to the location of the sunspot is plotted in black
and white. (b) The 3D potential field is represented on the
normal component of the magnetic field. The green lines
indicate the magnetic field lines. (c) 3D NLFFF is shown
in the same format as (b). (d) The elongated view in a
solid square is represented. The purple surfaces indicate
a strong current region(|J | = 0.3).

netic field converge toward to an equilibrium condition.
In this case, parameters are set at L0 = 5.325 × 109(cm),
B0 = 3957(G), ch = 0.2, cp = 0.1, and ν = 1.0 × 10−3

and the simulation domain is a rectangular box spanning
(0, 0, 0) < (x, y, z) < (4.0L0, 2.2L0, 2.2L0), which corre-
sponds to (295.2′′, 162.3′′, 162.3′′) and uniformly divided
by 256 × 128 × 128 grids. The vector-field (250 × 128
grids) from Hinode has also been formed by binning from
the original vector-field of 1000 × 512 grids. The left area
(6 × 128) is covered by SOHO/MDI data where three com-
ponents of the magnetic field are fixed by the initial poten-
tial field. The boundary condition is almost same as the
Low & Lou case except setting the tangential component
of the magnetic field on the top and lateral boundaries. In
this case, the tangential component of the magnetic field,
except for bottom boundary, is determined by an induction
equation (3) during an iteration, while the normal compo-
nent is fixed with an initial condition to conserve the mag-
netic flux in the whole domain. This procedure can lead to
force-free condition on the top and lateral boundaries due
to propagation of the magnetic shear along the magnetic
field lines from the bottom boundary.

Figures 2b and c show the potential field given as an
initial condition, and NLFFF obtained from a boundary
value problem. The lines indicate the magnetic field lines
and the color map plotted in black and white shows the
normal component of the magnetic field. We found that
the region surrounded by the solid square, above the po-

Fig. 3 (a) Selected field lines are plotted over the X-ray inten-
sity map obtained from Hinode/XRT. The blue and red
contours indicate the location of the negative and posi-
tive polarities. (b) Other selected field lines are plotted
over the CaII image obtained from Hinode/SOT.

larity inversion line, is much different from the potential
field. Figure 2d is an enlarged view of Fig. 2c and the pur-
ple isosurface indicates the strong current region where the
magnetic energy in this active region is stored. These re-
sults are consistent with [5], and [6].

We compared the extrapolated field lines with obser-
vational data from Hinode/XRT to evaluate its reliability.
Strong X-ray intensity is widely believed to correspond to
the location of the magnetic shear, but the 3D structure of
that is not clarified by the 2D image provided by observa-
tions. Figure 3a shows the selected field lines plotted on
the X-ray intensity map observed by Hinode/XRT at 20:30
UT on December 12th. We found that these sheared field
lines correspond to the strong X-ray intensity region which
is composed of differently shaped field lines. This result is
consistent with [7,8], and [9] in the previous study. We also
compared the extrapolated field lines with observational
data from Hinode/SOT. Since flare ribbons are widely be-
lieved to illuminate simultaneously on the regions corre-
sponding to the feet of the reconnected magnetic field lines
([10–13]), we can evaluate how well the model field may
capture the coronal magnetic field by inspecting the agree-
ment between the ribbons and the feet of the field lines.
This analysis also helps our understanding of the field lines
structure in the flaring site. Figure 3b represents a flare rib-
bon at 02:22 UT on December 13th in the color map and
selected field lines traced from the ribbon on the negative
pole. From this result, it is found that the location of the
footpoints of magnetic field lines corresponds well to the
flare ribbon. These results indicate the NLFFF effectively
reproduces the complicated 3D structure of the magnetic
field in the flaring region, even though the artificial bound-
ary conditions are imposed on the lateral and top bound-
aries and furthermore the vector-field data is observed six
hours before observation of Ca II.

Finally, we investigated the relationship between mag-
netic topology of field lines and the flare ribbon from the
CaII image obtained from Hinode. The magnetic topology
is defined as the photospheric cross-section of the quasi-
separatrix layers (QSLs) introduced by [14]. We calcu-
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Fig. 4 (a) The red lines indicate the distribution of N(x, y) >
25 defined in equation (7). The green lines indicate the
field lines. The solid and dotted white lines represent the
positive (790 G) and negative (−790 G) polarities of the
normal component of the magnetic field. (b) An image of
the flare ribbons observed at 02:22 UT on December 13th
is plotted over (a).

lated the following quantity at each pixel on the vector-
field maps:

N(x, y) =

√√∑
i=1,2

⎡⎢⎢⎢⎢⎢⎣
(
∂Xi

∂x

)2

+

(
∂Xi

∂y

)2⎤⎥⎥⎥⎥⎥⎦, (7)

where (X1, X2) is the relative distance corresponding to the
(x′ − x′′, y′ − y′′). (x′, y′) and (x′′, y′′) are the positions
of two end points of a field line on the photospheric sur-
face. Figure 4a represents distribution N(x, y) mapped on
the photosphere. The solid and dotted white lines indi-
cate the positive and negative normal components of the
magnetic field. The magnetic field lines are represented
by the green lines named by L1 and L2. In this figure,
N(x, y) > 25 is in red and we clearly find that the red is
not widely distributed but in a thin layered structure. We
also find that field lines change drastically across these red
layers such as L1 and L2. Figure 4b shows the flare rib-
bons BR1 and BR2 observed by Hinode/SOT at 02:22 on
December 13th over the N(x, y) distribution. These results
indicate that BR1 seems to be along with the part of the
layer of N(x, y). Because the flare ribbon is widely be-
lieved to correspond to the footpoint of reconnected field
lines, this well corresponds to the footpoint of separatrix.
On the other hand , the BR2 profile is slightly deviates from
the layer of N(x, y). Though this reason is not yet clarified,
one reason for this deviation may be derived from the time
gap between two different observations.

4. Summary
Our results show a flare producing magnetic structure

is already formed six hours before a flare onset and the
location of the flare ribbon may have a relation with the
N(x, y) layers. If we were able to obtain the vector-field

map six hours before a flare onset, we may be able to re-
construct the flare-producing magnetic field and suggest
the flare ribbon profile from the N(x, y) distribution. How-
ever, these results are just one of examples and all results
do not necessarily correspond to the ours. Therefore, we
will have to perform the statistical analysis using other
solar active regions. Unfortunately, though NLFFF can
tell us the quasi equilibrium condition before a flare, the
flare dynamics cannot be clarified from it. In previous nu-
merical studies for flare dynamics, ideal initial conditions
far from real magnetic configuration in the solar corona
have been assumed such as [15], or [16], and summarized
in [17]. However, we expect the further understanding by
applying NLFFF to numerical studies and we may advance
towards the realization of space weather.
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