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A semi-Lagrangian scheme is applied for the first time to computations of charged particle motions along
magnetic field lines, to numerically solve the δf gyrokinetic equations in a flux tube geometry. This new solver
adopted in the gyrokinetic Vlasov simulations has an advantage over the conventional Eulerian codes in calcu-
lating the parallel dynamics, because semi-Lagrangian schemes are free of the Courant-Friedrichs-Lewy (CFL)
condition that restricts the time step size. A study of the accuracy of the parallel motion simulations reveals that
numerical errors mainly stem from spatial (not temporal) discretization for realistic values of the grid spacing
and time step, and it demonstrates the advantage of the semi-Lagrangian scheme. This novel numerical method
is successfully applied to linear gyrokinetic simulations of the ion temperature gradient instability, where time
steps larger than those restricted by the CFL condition can be employed.
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1. Introduction
Gyrokinetic simulations are useful tools for studying

turbulent transport in toroidal plasmas. The development
of numerical techniques for these simulations has con-
tinued to improve their applicability, accuracy, and effi-
ciency. Recently, Pueschel et al. discovered that high-k‖
numerical oscillations due to the discretization of the field-
aligned coordinate cause a numerical problem in flux tube
gyrokinetic simulations [1]. The Vlasov simulation codes
that solve the gyrokinetic equation as a partial differential
equation in the phase space often introduce artificial (hy-
per) diffusion to suppress the numerical oscillations. To
lower the influence of the numerical dissipation on physi-
cal results, the grid spacing should be less than the parallel
wavelengths: this has expensive computational costs and
leads to a time step size that is severely restricted by the
Courant-Friedrichs-Lewy (CFL) condition in explicit Eu-
lerian schemes. This is crucial to gyrokinetic simulations
of the kinetic ballooning mode in high-β plasmas and mi-
cro instabilities in helical systems with many ripples.

In contrast with Eulerian schemes, semi-Lagrangian
schemes do not suffer from the CFL condition. The GY-
SELA code [2] solves the global full- f gyrokinetic equa-
tions with a semi-Lagrangian scheme and is applied to the
ion-temperature-gradient (ITG)-driven turbulence in toka-
mak plasmas. To our knowledge, however, there exists
no flux tube gyrokinetic code implemented with a semi-

author’s e-mail: smaeyama@nr.titech.ac.jp
∗) This article is based on the presentation at the 20th International Toki
Conference (ITC20).

Lagrangian scheme.
In this paper, we apply a semi-Lagrangian scheme to

the parallel dynamics, described by Poisson brackets for
the field-aligned coordinate and the parallel velocity, in a
flux tube gyrokinetic Vlasov simulation. The application is
made in three steps. First, the spatial accuracy of the semi-
Lagrangian scheme is evaluated for the one-dimensional
linear advection problem. Second, the parallel particle dy-
namics in the two-dimensional phase space is tested, where
sufficient number of spatial grid points is needed to avoid
unphysical fluctuations. It is demonstrated that the semi-
Lagrangian scheme with a time splitting method enables
us to take large time step sizes even with a fine mesh.
Third, linear gyrokinetic simulations of the ITG instabil-
ity are performed by implementing the semi-Lagrangian
scheme in the GKV code [3], which was originally devel-
oped as a Eulerian code for simulations of the electrostatic
ITG turbulence.

2. Parallel Dynamics in Gyrokinetics
Using the flux tube approximation [4], the linearized

gyrokinetic Vlasov equation for the perturbed ion gyrocen-
ter distribution function δf in the electrostatic limit is given
by (

∂

∂t
+ v‖∇‖ + vd · ∇ − μ∇‖Bmi

∂

∂v‖

)
δ f

= −eFM

Ti

[
v‖∇‖ + (vd − v∗) · ∇]Φ, (1)

where B, mi, e, FM, Ti, vd, and v∗ are the magnetic field
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strength, ion mass, elementary charge, Maxwellian distri-
bution function, ion temperature, magnetic drift velocity,
and diamagnetic drift velocity, respectively. The paral-
lel velocity v‖ and magnetic moment μ are employed as
the velocity space coordinates. The parallel gradient for a
large aspect ratio tokamak with concentric circular mag-
netic surfaces is written as ∇‖ = (1/qR0)∂z, where q, R0,
and z are the safety factor, major radius, and field-aligned
coordinate, respectively. Periodic boundary conditions are
assumed in the perpendicular coordinates x and y. The gy-
rocenter electrostatic potential Φ is related to the electro-
static potential φ by Φkx ,ky = J0(k⊥ρi)φkx,ky in the perpen-
dicular wave number space, where J0, k⊥, and ρi are the
zeroth-order Bessel function, perpendicular wave number,
and ion Larmor radius, respectively. The electrostatic po-
tential is determined by the quasi-neutrality condition with
an adiabatic electron response [3].

By neglecting the gyrocenter electrostatic potential
and the perpendicular motions (the magnetic and diamag-
netic drifts), one can focus on the parallel dynamics in the
gyrokinetic Vlasov equation

∂ f
∂t
+ { f ,K}‖ = 0, (2)

where K = v2‖/2 + μB/mi is the particle kinetic energy per
unit mass and { f , g}‖ = ∇‖ f∂v‖g− ∂v‖ f∇‖g denotes the par-
allel Poisson brackets. Equation (2) represents the field-
aligned advection of f characterized by the parallel parti-
cle motions of

ds
dt
= {s,K}‖, (3)

where s = (qR0z, v‖) are the canonical coordinates.

3. Numerical Schemes
3.1 Symplectic integrator and splitting

method
The parallel particle motions are characterized by the

Poisson brackets with the additive separable Hamiltonian,
K(z, v‖) = T (v‖) + V(z), where T (v‖) = v2‖/2 and V(z) =
μB(z)/mi for a fixed μ. Introducing the differential opera-
tors DT (s) = {s, T }‖ and DV (s) = {s,V}‖, the formal solu-
tion of Eq. (3) is given by

s(t + Δt) = exp [Δt(DT + DV )] s(t). (4)

We obtain an approximation to Eq. (4) by splitting the time
integration as follows:

s(t + Δt) =
k∏

j=1

exp
(
c jΔtDT

)
exp

(
d jΔtDV

)
s(t), (5)

which is known as a symplectic integrator consisting of
elementary symplectic mappings. The coefficients c j and
d j can be found in Ref. [5]. This integrator is applied to
the mapping of f , which leads to the splitting of the time
integration in Vlasov simulations [6].

3.2 Semi-lagrangian scheme
Considering Eq. (2) as an advection equation, the

value at (z, v‖) is updated with that at the departure point
(ζ, v):

f (t + Δt, z, v‖) = f (t, ζ, v). (6)

The departure point (ζ(Δt, z, v‖), v(Δt, z, v‖)) is obtained
from the characteristic curves defined by Eq. (3). By means
of the splitting method, Eq. (2) can be split into two linear
advection problems in z and v‖. Then, we can compute
the value of f at the departure point from its values on the
grid points by using one-dimensional interpolations. Here,
three interpolation methods are examined: the cubic La-
grange interpolation (CLI), the cubic Hermite interpolation
(CHI), and the quintic interpolation using second deriva-
tives (QI2) [7]. QI2 is given by

Q5(α) = β3(1 + 3α + 6α2) f n
j + β

3(α + 3α2)Δx∂x f n
j

+ 0.5β3α2Δx2∂x∂x f n
j + α

3(1 + 3β + 6β2) f n
j+1

−α3(β + 3β2)Δx∂x f n
j+1 + 0.5α3β2Δx2∂x∂x f n

j+1,

(7)

where α = (X − x j)/Δx and β = (x j+1 − X)/Δx with the de-
parture point X located between x j and x j+1. The notations
x j = jΔx, tn = nΔt, and f n

j = f (tn, x j) are used for simplic-
ity. QI2 only requires the same reference points as those
required in CHI when the derivatives are approximated by
fourth-order central finite difference methods. Note that
CHI and QI2 conserve mass, while CLI does not. All in-
terpolations above do not satisfy the conservation of the L2
norm and the positivity of f : the latter is not required for
δ f gyrokinetic simulations.

4. Numerical Results
4.1 Linear advection

First, let us consider the one-dimensional advection
problem with constant velocity u:

∂y
∂t
+ u
∂y
∂x
= 0, (8)

where 0 ≤ x ≤ L and y(t, 0) = y(t, L). The analytical
solution y(t, x) = y(0, x − ut) is not exactly satisfied in nu-
merical simulations because of numerical dissipation and
dispersion. To evaluate the numerical errors, one can ana-
lyze schemes using the Fourier expansion

yn
i =

N−1∑
j=0

ŷn(k j) exp(ik jxi), (9)

where N and k j = 2π j/L are the number of grid points and
wave number, respectively. Following Imai [8], the gain
error GE and the phase error ΘE for each wave number are
calculated as

GE(k j) = 1 −
∣∣∣∣∣∣ ŷ

n(k j)
ŷ0(k j)

∣∣∣∣∣∣
1

k j |u|tn

, (10)

ΘE(k j) =

∣∣∣∣∣∣1 − 1
k j|u|tn arg

(
ŷn(k j)
ŷ0(k j)

)∣∣∣∣∣∣ , (11)
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respectively. The gain and phase errors are plotted in Fig. 1
as a function of the wave number. For reference, the re-
sults of two Eulerian schemes are also plotted, where the
third-order upwind (UF3) and the fourth-order central fi-
nite (CF4) differences are implemented with the fourth-
order Runge-Kutta-Gill (RKG) method for time integra-
tion. Figure 1 (a) shows that the gains of CLI and CHI are
accurate to third order, while the gain of QI2 is accurate
to fifth order in GE. The results of CHI and QI2 are less
dissipative than that of UF3. While the central finite dif-
ference method itself does not cause numerical dissipation,

Fig. 1 (a) Gain errors GE and (b) phase errors ΘE as a func-
tion of the wave number k (where L = 2π, N = 512,
and C = 0.4). The results of three interpolation schemes
(CLI, CHI, and QI2) and two Eulerian schemes (UF3 and
CF4) are plotted.

CF4 has the smallest dissipation due to time integration by
the RKG method. All schemes have fourth-order accuracy
for the phase, as shown in Fig. 1 (b).

Note that the errors in semi-Lagrangian schemes pe-
riodically depend on the Courant number C = |u|ΔtN/L,
while the errors in explicit Eulerian schemes monotoni-
cally grow as C → 1. The error dependence on the Courant
number is similar to that obtained by Filbet [9].

4.2 Dynamics in parallel phase space
Results of benchmark tests for trapped and passing

particle motions are demonstrated in this section. Equa-
tion (2) expresses that the parallel dynamics is regarded as
an advection of a distribution function along equi-contour
lines of the particle kinetic energy K in the phase space
(z, v‖) [see Fig. 2 (a)]. The contours with K < μB0/mi cor-
respond to trapped particle trajectories, and the others rep-
resent trajectories of passing particles. There is a separa-
trix with an X-point because the magnetic field strength is
given by B/B0 = 1 − ε cos z, where B0 and ε are the mag-
netic field strength on the magnetic axis and the inverse
aspect ratio, respectively.

The time integration of Eq. (2) is computed by using
the second-order splitting method and CHI. The initial pro-
file is given by f (z, v‖, t = 0) = FM(K) exp

[
−(z/0.2π)2

]
,

where −π ≤ z ≤ π and −5 ≤ v‖/vthi ≤ 5. The ion ther-
mal velocity is denoted by vthi. We employ 256 × 256
grid points to discretize the parallel phase space and a
time step size of Δt/ttr = 0.032, where ttr = qR0/vthi.
The periodic and zero-fixed boundary conditions are as-
sumed in the z and v‖ directions, respectively. Snapshots
of equi-contours of the distribution function are shown in
Fig. 2 (b)-(d). The distribution function is advected along
the contour lines of the particle kinetic energy (see also
Fig. 2 (a)). The ballistic motion of passing particles elon-
gates the profile and makes fine-scale structures. When the
scale length of the fine structures reaches the grid size, un-
physical fluctuations may appear. Physically, a dissipation
mechanism (e.g., collisions in velocity space) is required
to stabilize the high-wave number modes, where we have
to employ sufficient number of grid points to represent the
typical scale length of the dissipation. Similar require-
ments are found in flux tube gyrokinetic simulations with
non-periodic boundary conditions along the field lines for

Fig. 2 (a) Contour lines of the particle kinetic energy K, and (b)-(d) snapshots of equi-contours of the distribution function f in parallel
phase space (where ε = 0.18 and μB0/Ti = 4.0). Horizontal and vertical axes are defined by z and v‖, respectively.
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Fig. 3 Norms of the errors LE at t/ttr = 3.2 as a function of the
time step size Δt for several Nz and Nv. Minimum period
of the particle passing motions is Tmin = qR02π/v‖,max =

1.25ttr , where v‖,max/vthi = 5.

ky � 0 and ŝ � 0 (where ky and ŝ are the poloidal wave
number and magnetic shear, respectively), because the dis-
tribution function is also elongated by sheared Hamiltonian
flows in toroidal configurations. Instead of physical dissi-
pation, in this paper, numerical dissipation contributes to
stabilization.

To estimate the temporal accuracy of the present
method, we evaluate the norm of the errors LE defined by

LE =

√√√ Nz∑
i=1

Nv∑
j=1

∣∣∣∣ fi, j − f ref
i, j

∣∣∣∣2 / Nz∑
i=1

Nv∑
j=1

∣∣∣∣ f ref
i, j

∣∣∣∣2, (12)

where Nz and Nv are the number of grid points in the z and
v‖ coordinates, respectively. The reference solution f ref

i, j is
computed with finer spatial mesh sizes (Nz = Nv = 4096)
and a smaller time step size (Δt/ttr = 0.0032). Figure 3
plots LE as a function of the time step size. The second-
order temporal accuracy of the scheme is confirmed in the
range of Δt/ttr ≥ 0.2, as expected. For smaller Δt, how-
ever, there is a plateau regime where spatial errors dom-
inate [10]. Because the spatial errors are dominant for
practical parameters, we can obtain sufficiently accurate
results for larger time steps than those restricted by the
CFL condition, e.g., Δt < qR02π/v‖,maxNz = 0.0049ttr for
v‖,max/vthi = 5 and Nz = 256. It is encouraged to use
semi-Lagrangian schemes because Eulerian schemes re-
quire a significantly smaller time step size. The present
result demonstrates that the semi-Lagrangian scheme al-
lows us to take a time step size sixty times larger than that
restricted by the CFL condition, with desirable temporal
accuracy.

4.3 Ion temperature gradient instability
Tests of a gyrokinetic simulation of the linear ITG in-

stability are carried out for the Cyclone DIII-D base case
parameter set [11]. The time integration of Eq. (1) is split
into two parts: one with the the parallel motions (Eq. (2))

Fig. 4 Linear growth rates γl and real frequencies ωr as a func-
tion of the time step size Δt (where kyρi = 0.14 and
Nz = 64). Results using the semi-Lagrangian scheme
for the parallel dynamics are compared with the original
GKV results.

and one without them. The former is computed by using
CHI (QI2 gives the same results), and the latter is com-
puted by using the RKG method. Figure 4 plots the linear
growth rate and real frequency as a function of the time
step size for a low-ky mode, where the CFL restriction
due to the parallel motions is more severe than that due
to the perpendicular drift motions in the original Eulerian
GKV code. The results agree well with those obtained by
the original GKV code: their relative errors are less than
0.1%. Therefore, the new solver with the semi-Lagrangian
scheme enables us to take larger time step sizes than that
in the CFL condition of Δt/ttr ∼ 0.02 and still achieve ac-
curate results. The maximum time step is controlled not
by the parallel motions but by the perpendicular drift mo-
tions, and is estimated as 1/vd,maxk⊥ ∼ 0.055ttr with the
parameters for the case in Fig. 4.

5. Summary
We made the first application of a semi-Lagrangian

scheme to a flux tube gyrokinetic simulation in three steps:
linear advection, trapped and passing particle motions, and
linear ITG instability in a flux tube geometry. First, the
spatial accuracy of the schemes was evaluated for the lin-
ear advection problem. CHI and QI2 schemes were less
dissipative than the UF3 scheme and less dispersive than
the UF3 and CF4 schemes. Second, a study of the accuracy
of the parallel dynamics revealed that spatial errors domi-
nated rather than temporal ones, because the sheared flow
pattern in the phase space elongated the profile of the dis-
tribution function and generated fine-scale structures. The
result demonstrated that a semi-Lagrangian scheme is ad-
vantageous to simulate the parallel dynamics, because it
allows us to increase the time step size without the CFL
restriction. Finally, applying the semi-Lagrangian scheme
to the parallel dynamics enabled us to take larger time step
sizes in simulations of a low-ky mode of the linear ITG in-
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stability. Semi-Lagrangian schemes should be more useful
for flux tube simulations including both kinetic ions and
electrons, because the electron thermal speed is faster than
that of ions by the square-root of the mass ratio for Te = Ti.
Our near-term future work will extend the GKV code to
deal with electron dynamics.
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