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Effect of Ion Composition on Oblique Magnetosonic Waves∗)
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The effects of ion composition on oblique magnetosonic waves in a two-ion-species plasma are studied
theoretically and numerically. First, it is analytically shown that the KdV equation for the low-frequency mode,
the lower branch of magnetosonic waves, is valid for amplitudes ε < ε(l−)

max, where ε(l−)
max is a measure of the upper

limit of the amplitude of the rarefactive solitary pulse of the low-frequency mode and is given as a function of the
propagation angle of the wave θ, the density ratio and cyclotron frequency ratio of two ion species. The value of
ε(l−)

max increases with decreasing θ. Next, with electromagnetic particle simulations, the nonlinear evolution of the
low- and high-frequency modes is examined. It is demonstrated that shorter-wavelength low- and high-frequency-
mode waves are generated from a long-wavelength low-frequency-mode pulse if its amplitude ε exceeds ε(l−)

max.
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1. Introduction
Nonlinear magnetosonic waves have been investigated

by many authors since the waves play crucial roles in par-
ticle heating and acceleration in space and fusion plasmas.
Furthermore, because both plasmas usually contain multi-
ple ion species, the effects of multiple ion species on the
magnetosonic waves have been extensively studied.

In a two-ion-species plasma, the magnetosonic wave
propagating perpendicular to a magnetic field is split into
two modes; the low- and high-frequency modes. The
frequencies of the low-frequency mode are in the range
0 < ω < ω−r, where ω−r is the ion-ion hybrid resonance
frequency [1],

ω−r = [(ω2
paΩ

2
b + ω

2
pbΩ

2
a)/(ω2

pa + ω
2
pb)]1/2. (1)

Here, the subscripts a and b indicate ion species, and Ω j

and ωp j ( j = a or b) represent their cyclotron and plasma
frequencies, respectively. The high-frequency mode has a
finite cut-off frequency given by

ω+0 = (ω2
pa/Ω

2
a + ω

2
pb/Ω

2
b)ΩaΩb|Ωe|/ω2

pe. (2)

Here, the subscript e refers to the electrons.
Although the dispersion curves of the high- and low-

frequency modes are quite different in the long-wavelength
region, Korteweg-de Vries (KdV) equations have been de-
rived for both the low- and high-frequency modes [2]. The
characteristic soliton width of the low-frequency mode is
of the order of the ion inertia length c/ωpi, while that of the
high-frequency mode is of the order of the electron skin
depth c/ωpe. The KdV equation for the high-frequency
mode is valid for wave amplitudes (me/mi)1/2 � ε � 1.
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The nonlinear evolution of these modes have been studied
in Ref. [3], under the assumption that the density of the
hydrogen (H) ions is much higher than heavy-ion densities
as in space plasmas. In such plasma, if a large-amplitude,
long-wavelength pulse of the low-frequency mode is ex-
cited, it will steepen and then emit short-wavelength pulses
of the high-frequency mode.

Fusion plasmas also contain multiple ion species, such
as deuterium (D) and tritium (T). However, the densities of
D and T are the same order, which differs from the case
of space plasmas. In view of these facts, the reference [4]
has discussed the effect of ion mass and density ratios on
perpendicular magnetosonic waves. It has pointed out the
importance of the normalized frequency difference,

Δω = (ω+0 − ω−r)/ω+0, (3)

in the nonlinear evolution of the waves. The value ofΔω in-
creases with increasingΩa/Ωb, whereΩa > Ωb is assumed.
For a fixedΩa/Ωb, Δω has its maximum value when the ion
charge densities are equal, naqa = nbqb. It has been found
that the KdV equation for the low-frequency mode is valid
for the amplitudes ε < 2Δω, which suggest that nonlin-
ear coupling between the high- and low-frequency modes
can occur if ε > 2Δω. With electromagnetic particle sim-
ulations, nonlinear evolution of magnetosonic waves was
investigated for various values of na/nb and Ωa/Ωb, and
has been shown that high-frequency-mode pulses are gen-
erated from a long-wavelength low-frequency-mode pulse
if its amplitude exceeds 2Δω.

In this paper, we extend the above work to the study of
oblique magnetosonic waves. In Sec. 2, we present theoret-
ical expressions for quantities on the low-frequency mode,
including Δω as a factor. We then obtain the condition
for the KdV equation for the low-frequency mode to be
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valid. In Sec. 3, we investigate, with electromagnetic parti-
cle simulations, how the nonlinear evolution of the oblique
magnetosonic waves depends on Δω and the propagation
angle θ.

2. Theory for Low-Frequency Mode
We briefly outline the linear dispersion relations of

magnetosonic waves in a multi-ion-species plasma. We
consider the waves propagating in the x direction in a mag-
netic field in a (x, z) plane, B0 = B0(cos θ, 0, sin θ). Fig-
ure 1 shows dispersion curves of magnetohydrodynamic
waves for propagation angle θ = 86◦ in a H-He plasma
with nH/nHe = 10. The lines A, H and L represent the
Alfven wave, the high- and low-frequency modes of the
magnetosonic wave, respectively; the properties of the
Alfven wave is not significantly changed by the presence
of two ion species. The dispersion curves for both the
high- and low-frequency modes have large curvature at the
wavenumber kc defined by

kc = ω−r/vA, (4)

where vA is the Alfven speed. The two curves are close
near this wavenumber.

We now investigate the linear dispersion relation of
the low-frequency mode in detail. For the range of
wavenumbers, k � kc, we can approximate the linear dis-
persion relation of the low-frequency mode as
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v2Ak2
� 1 − 2Δω
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where r is defined as

r = ω2
−r(Ω

2
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2
b)/(Ω2
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2
b) − 1. (6)

We introduce the angle θcl defined by

cos2 θcl = 2Δω/r. (7)

At the angle θcl, the second and third terms on the right-
hand side of Eq. (5) cancel. In the following, we consider
the cases where θ < θcl.

Fig. 1 Dispersion curves for magnetohydorodynamic waves for
θ = 86◦ in a H-He plasma with nH = 10nHe.

When θ < θcl, the dispersion curve of the low-
frequency mode has an inflection point in the region, 0 <
k < kc. For k < k(l)

inf , where k(l)
inf denotes the wave num-

ber of the inflection point, ∂2ω/∂2k is positive, while for
k > k(l)

inf , ∂
2ω/∂2k is negative. One can obtain k(l)

inf from
Eq. (5), applying the condition ∂2ω/∂2k = 0, as

k(l)
inf

kc
=

[
3 sin2 θ(r cos2 θ − 2Δω)

20Δω − 2(r cos2 θ − 2Δω)2

]1/2
. (8)

For small wave numbers

k � k(l)
inf , (9)

the dispersion relation (5) is written as

ω = vAk(1 + d2
l1k2/2). (10)

Here, dl1 is defined as

dl1 = |2Δω − r cos2 θ|1/2/(kc sin θ). (11)

As expected from Eq. (10), the nonlinear behavior of
the low-frequency mode can be described by KdV equation
[5],

∂Bz1

∂τ
+

3vA
2B0

sin θBz1
∂Bz1

∂ξ
− vAd2

l1

2
∂3Bz1

∂ξ3
= 0, (12)

where Bz1 is the perturbation of Bz, and ξ and τ are
stretched coordinates, ξ = ε1/2(x − vAt) and τ = ε3/2t with
ε ∼ |Bz1/B0|. This equation has the rarefactive soliton so-
lution,

Bz1/B0 = −bnsech2{[x − (1 − bn/2)vAt]/Dl1}, (13)

where bn is the normalized amplitude, Dl1 is the soliton
width,

Dl1 = 2b−1/2
n dl1. (14)

Because of Eq. (14), the characteristic wave number of the
rarefactive solitary wave can be estimated as

k ∼ 1/Dl1 ∼ ε1/2/dl1. (15)

The dispersion form (10) is valid in the long wave-
length region, k � k(l)

inf . Then, using Eqs. (8) and (15), we
obtain a condition for the amplitude of the rarefactive pulse
as

ε � ε(l−)
max, (16)

where ε(l−)
max is defined as

ε(l−)
max =

3(r cos2 θ − 2Δω)2

20Δω − 2(r cos2 θ − 2Δω)2 . (17)

The value of ε(l−)
max increases with decreasing θ from θcl. As

Δω increases, ε(l−)
max increases.
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Fig. 2 Wave evolution of the low-frequency mode for θ = 55◦ in
H-T plasma with nH = nT.

3. Simulation of Nonlinear Evolution
We study nonlinear evolution of oblique magne-

tosonic waves with numerical simulations, using a one-
dimensional (one space coordinate and three velocity com-
ponents), electromagnetic particle code with full ion and
electron dynamics. The system is periodic in the x direc-
tion with the length Lx = 4096Δg, where Δg is the grid
spacing. The total number of electrons is Ne � 2.1 × 106.
We simulate H-T and H-He plasmas. The hydrogen-to-
electron mass ratio is taken to be mH/me = 100. The speed
of light is c/(ωpeΔg) = 4, where ωpe is the electron plasma
frequency calculated by use of the electron density aver-
aged over the entire region. The electron thermal veloc-
ity is (Te/me)1/2/(ωpeΔg) = 0.5. The ion-to-electron tem-
perature ratio is Ti/Te = 0.1. We have chosen this small
ratio to avoid ion reflection by nonlinear waves. The ex-
ternal magnetic field is in the (x, z) plane; its strength is
|Ωe|/ωpe = 1.0. Initially, we have a sinusoidal disturbance
of the low-frequency mode with a wavelength Lx propa-
gating in the positive x direction. The amplitude of the
magnetic field Bz is chosen to be δBz/B0 = 0.1; other com-
ponents of the disturbance are determined according to the
linear theory of the low-frequency mode.

We firstly study the rarefactive pulse of the low-
frequency mode in the H-T plasma with nH/nT = 1, taking
the propagation angle to be θ = 55◦. The value of ε(l−)

max for
this case is 0.48; hence δBz/B0 < ε

(l−)
max at t = 0. Figure 2

shows magnetic field profiles at various times. As a result
of nonlinear evolution, some pulses are formed. These are
the rarefactive pulses of the low-frequency mode. High-
frequency-mode pulses are not found. At ΩHt = 320, the
left pulse, whose center is at (x − vAt)/(c/ωpe) = 620,
has the amplitude ε = (Bmax − Bmin)/B0 = 0.24, where
Bmax and Bmin are the maximum and minimum values
of Bz. Even though the maximum pulse amplitude ε is
greater than δBz/B0 of the initial disturbance, it does not
exceed ε(l−)

max. Substituting the value of ε into Eq. (14) yields
D = 44c/ωpe. This is in good agreement with the observed
value of the width of the left pulse, D � 44c/ωpe. Figure 3
shows the power spectrum P(k, ω) of magnetic fields cal-
culated from the data for 0 < ΩHt < 320. The vertical lines

Fig. 3 Power spectrum of magnetic field for θ = 55◦ in H-T
plasma with nH = nT.

Fig. 4 Wave evolution and power spectrum of magnetic field for
θ = 60◦ in H-T plasma with nH = nT.

represent the wavenumber kc and k(l)
inf , and the horizontal

dotted lines represent the frequencies ω+0 and ω−r. This
figure verifies that the waves of the low-frequency mode
with k > k(l)

inf and of the high-frequency mode withω > ω+0

are not generated.
We now consider a case for which the KdV equation

(12) is not valid. Figure 4 shows magnetic field profiles at
ΩHt = 208, 256 and 320 and power spectrum for the case
of θ = 60◦ (< θcl), for which ε(l−)

max =0.18 is greater than
the amplitude of the initial sinusoidal wave. As the result
of the wave steepening, rarefactive pulses are formed, and
the amplitude of the left pulse exceeds ε(l−)

max; for example,
at ΩHt = 256, the amplitude is ε = (Bmax − Bmin)/B0 =

0.23. After ΩHt = 256, perturbations are generated behind
the left pulse; at ΩHt = 320, the perturbations exist in the
region 100 < (x−vAt)/(c/ωpe) < 500. The power spectrum
P(k, ω) in Fig. 4 shows that the low-frequency-mode waves
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Fig. 5 Wave evolution and power spectrum of magnetic field for
θ = 55◦ in H-He plasma with nH = 10nHe.

with the wavenumbers k(l)
inf < k ≤ kc are created, in addition

to the longer-wavelength waves with k < k(l)
inf . This differs

from the case with θ = 55◦, in which the waves are limited
in the region, k < k(l)

inf (see Fig. 3). We can thus find that
when the amplitude of the rarefactive low-frequency-mode
pulse exceeds ε(l−)

max, the shorter wavelength (k(l)
inf < k ≤ kc)

perturbations are excited behind the pulse.
We next simulate an H-He plasma with nHe/nH = 0.1.

Figure 5 shows the result of the case with θ = 55◦. The
value of ε(l−)

max for this case is 0.082, which is much smaller
than those for the cases of the above H-T plasmas. Be-
cause of the wave steepening, the maximum amplitude of
the low-frequency-mode pulse exceeds ε(l−)

max (for example,
at ΩHt = 215, the amplitude is ε = 0.23), and the low-
frequency-mode perturbations with k(l)

inf < k ≤ kc are gen-
erated behind the rarefactive pulse. Further, power spec-
trum indicates that the high-frequency-mode waves with
ω ∼ ω+0 and k ∼ kc are generated, although their ampli-
tudes are quite small.

The generation of the high-frequency-mode waves is
enhanced when ε(l−)

max is small. We plot in Fig. 6 the result
of the case with θ = 66◦, for which ε(l−)

max = 0.005. The
power spectrum clearly show that the greater-amplitude
high-frequency-mode waves with the wavenumbers kc ≤ k
are created.

In order to see how the generation of the high-
frequency-mode waves depends on θ in more detail, we
compare the results of the cases of the H-He plasma with
various θ’s in the range of θ < θcl. The upper panel in Fig. 7
shows the ratio between the integrals of the powers of the
high- and low-frequency modes, IH/IL, where IH and IL are

Fig. 6 Wave evolution and power spectrum of magnetic field for
θ = 66◦ in H-He plasma with nH = 10nHe.

Fig. 7 The ratio IH/IL and the maximum amplitude εmax for var-
ious θ’s in H-He plasma with nH = 10nHe.

defined by

IH =

∫ km

0

∫ ω+r

ω+0

P(k, ω)dkdω, (18)

IL =

∫ km

0

∫ ω+0

0
P(k, ω)dkdω. (19)

Here ω+r is the resonance frequency of the high-frequency
mode [5], and km = ω+r/vA. The ratio IH/IL is almost
zero in the region θ < 50◦, while it increases with θ in
the region θ > 50◦. The lower panel in Fig. 7 shows the
maximum amplitude of the magnetic disturbance, εmax =

(Bmax − Bmin)/B0; the values of εmax are obtained from the
data averaged over the period from ΩHt = 135 to 215. The
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solid line represents ε(l−)
max. For θ < 50◦, the values of εmax

are smaller than ε(l−)
max, while for θ > 50◦, εmax’s are greater

than ε(l−)
max. Comparing upper and lower panels in Fig. 7, we

confirm that the production of the high-frequency-mode
waves is enhanced as ε(l−)

max decreases.

4. Summary
We have studied the effects of ion composition on

oblique magnetosonic waves with theory and simulations.
First, we analytically obtained the condition for the KdV
equation for the low-frequency mode to be valid. The
upper limit of the amplitudes ε(l−)

max has been given as a
function of θ and Δω. Next, with electromagnetic particle

simulations, we investigated the nonlinear evolution of the
waves for various θ’s and Δω’s. It was shown that when
the amplitude of the long-wavelength rarefactive low-
frequency-mode pulse exceeds ε(l−)

max, shorter-wavelength
low- and high-frequency-mode waves are generated.
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