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Fluid Moments in the Reduced Model for Plasmas
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Representation of particle fluid moments in terms of fluid moments in the modified guiding-centre model
for flowing plasmas with large E × B velocity [N. Miyato et al., J. Phys. Soc. Jpn. 78, 104501 (2009)] is derived
from the formal exact representation by a perturbative expansion in the subsonic flow case. It is similar to that in
the standard gyrokinetic model in the long wavelength limit, except it has an additional flow term. The flow term
has no effect on the representation for particle density, leading to the same representation as the standard one
formally. In the conventional guiding-centre models for flowing plasmas, on the other hand, the representation
for particle density is different from the standard one. This is due to the difference in the transformation for the
guiding-centre position. Although the exact representation usually used in the standard gyrokinetic model has a
different form from that in the modified guiding-centre case, correspondence between the two models is shown
by considering the alternative form of exact representation in the standard gyrokinetic case. The representation
for particle density is also obtained from the single particle Lagrangian by a variational method which is used to
derive the representation in the transonic case.
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1. Introduction
Reduced models such as the gyrokinetic model [1] in

which fast gyro-motion of charged particles is separated
from the other dynamics are widely used to study phe-
nomena whose timescales are much longer than the pe-
riod of the gyro-motion. Although a large plasma flow or
a strong radial electric field is observed in transport bar-
riers [2, 3] whose formation is necessary for confinement
improvement of magnetised fusion plasmas, the large flow
is not taken into account in the standard reduced model.
Hence, extension of the standard model is needed to treat
the formation of transport barriers. Several gyrokinetic La-
grangians have been presented to treat this situation [4–10].
Here we give an account of the underlying representations
of the particle density in each of these models. We empha-
sise the similarity of the physics despite these differences
which pertain to representation, not content. Ultimately,
the basis on a system Lagrangian affords the ability to es-
tablish the underlying representation in a straightforward
manner, via application of the functional derivative with
respect to the electrostatic potential. This can be referred
to as the variational method of the push-forward transfor-
mation.

Recently a reduced fundamental 1-form (phase space
Lagrangian) including a large E × B flow was derived
by modifying the standard guiding-centre transformation
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through the Lie-transform perturbation method [4]. In con-
trast to conventional models for a flowing plasma [5–10],
the symplectic part of the Lagrangian is the same as the
standard one without flow formally. In the reduced models
the separation of the fast gyro-motion from the other dy-
namics is achieved by the phase space transformation from
the particle phase space to the guiding-centre phase space.

Guiding-centre fluid moments defined as integrals in
the guiding-centre phase space are different from cor-
responding particle fluid moments due to finite-Larmor-
radius (FLR) effects [1,11–21]. Any particle fluid moment
can be represented in terms of the guiding-centre fluid
moments. It is called the push-forward representation of
particle fluid moment associated with the transformation
from the particle phase space to the guiding-centre phase
space [1, 20]. An example of the representation is found
in the Poisson equation for an electrostatic potential or the
quasi-neutrality condition in the gyrokinetic and gyrofluid
models [1,11–14,20,22]. The push-forward representation
of particle density appears at the charge density part of the
reduced Poisson equation which is written by an integral
in the guiding-centre phase space with the guiding-centre
distribution function. The requirement that the charge den-
sity part agrees with the product of particle density multi-
plied by electric charge for each particle species gives the
push-forward representation of particle density. In the re-
duced models, the quasi-neutrality condition between elec-
trons and singly charged ions shows the same relation since
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the difference between the particle density and the guiding-
centre density can be neglected for electrons, while it is not
for hot ions in the magnetised fusion plasmas. The differ-
ence between the particle density and the guiding-centre
density can be viewed as polarisation density. The po-
larisation density also appears as a vorticity in traditional
reduced fluid models which are not derived from reduced
kinetic equations and therefore are not described by the
guiding-centre fluid moments [23–26].

Reduced fluid equations are traditionally derived from
more rigorous fluid models like the Braginskii model. In
the derivations, it is needed to calculate the stress tensor
explicitly and one encounters the issue of gyroviscous can-
cellations and corrections whose calculation is very cum-
bersome [27–29]. There is a detour to avoid the compli-
cated issue on the stress tensor. The reduced fluid equa-
tions can be also derived from fluid moment equations of
the reduced kinetic equation by using the push-forward
representation [13, 16, 18]. In this alternative way, it is no
more necessary to handle the stress tensor, since dynam-
ical reduction is performed at the kinetic level. Besides,
expressions for the gyroviscous force are obtained by com-
paring the FLR-corrected reduced fluid equations obtained
from the guiding-centre fluid equations with the particle
fluid momentum equation [13, 16].

Explicit push-forward representation depends on de-
tails of the guiding-centre transformation. In this paper
we derive the push-forward representation of particle fluid
moment in our modified guiding-centre model for flow-
ing plasmas and compare it with those in the conventional
guiding-centre models for flowing plasmas and in the stan-
dard gyrokinetic model with slow flow. In Sec. 2, we ex-
plain the modified guiding-centre model briefly. The stress
is placed on the difference between the modified model and
the conventional models. In Sec. 3, the push-forward rep-
resentation of general scalar particle fluid moment is de-
rived from the exact representation perturbatively in the
subsonic flow case and correspondence to the standard gy-
rokinetic case is discussed. Pull-back representation of
guiding-centre fluid moments, inverse of the push-forward
representation, is derived in Sec. 4. In Sec. 5, we explain
variational derivation of the push-forward representation
of particle density by which the representation in the tran-
sonic case is derived. In Sec. 6, the push-forward represen-
tation of particle flux is considered. Finally, a summary is
given in Sec. 7.

2. Guiding-Centre Theory
We consider a transformation from particle coordi-

nates z = (x, v‖, w, θ) to guiding-centre coordinates Z =
(X,U, μ, ξ) given by [4]

X = x − ερgc + O(ε2), (1)

U = v‖ + εGU
1 + O(ε2), (2)

μ =
mw2

2B
+ εGμ1 + O(ε2), (3)

ξ = θ + εGξ1 + O(ε2), (4)

where x is the position of a particle with mass m and elec-
tric charge q, v‖ is the particle velocity along the magnetic
field, w = |w| = |u⊥ − D| is the particle perpendicular ve-
locity in the frame moving with the E× B drift velocity D,
θ is the particle gyrophase angle, and ε ∼ ρ/L is the small
parameter with the Larmor radius ρ and the background
gradient scale length L. Gi

1 is a component of the vector
field generating the guiding-centre transformation at first
order in ε and is summarised in Appendix A. The perpen-
dicular velocity vector is expressed by w = wĉ with

ĉ = − sin θe1 − cos θe2, (5)

where e1 and e2 are unit vectors spanning the plane per-
pendicular to b̂ ≡ B/B. It is noted that the Larmor radius
vector ρgc = b̂ × u⊥/Ω has a non-vanishing gyroaverage
part due to the definition of the gyrophase angle here:

〈ρgc〉 =
b̂ × D
Ω

≡ ρE , (6)

where Ω = qB/m is the gyrofrequency and 〈·〉 denotes gy-
roaverage. The gyrophase dependent part of ρgc is given
by

ρ̃gc = ρgc − 〈ρgc〉 =
b̂ × w
Ω
≡ ρ. (7)

When it is assumed that the E × B drift velocity is compa-
rable to the ion thermal velocity vti, ρE ∼ ρ for ions. The
difference from the guiding-centre transformation without
flow, ρE , corresponds to the gyroaverage of the gyro-centre
displacement vector in the standard gyrokinetics [20]. It is
noted that Gμ1 also has the nonvanishing gyroaveraged part
due to the E × B flow [4],

〈Gμ1〉 	 −
μ

Ω
b̂ · ∇ × D 	 −∇ ·

(
μ

ΩB
∇⊥ϕ

)
, (8)

where ϕ is the electrostatic potential. The guiding-centre
transformation above yields the following guiding-centre
phase space Lagrangian,

Γ = Lpdt = qA∗ · dX + ε2
m
q
μdξ − Hdt, (9)

where A∗ = A + ε(m/q)Ub̂ is the modified vector poten-
tial and H is the guiding-centre Hamiltonian. We assume
that a magnetic field is independent of time. As mentioned
above, the symplectic part of the Lagrangian is the same
as the no flow case formally. In the conventional guiding-
centre models for flowing plasmas, A∗ includes a flow term
which changes the symplectic structure in the no flow case
when the flow is time-varying [5–9]. The phase space La-
grangian similar to the present one is also found in Ref.
[19]. The Jacobian of the transformation from the particle
phase space to the guiding-centre phase space is given by
J = B∗‖/m with B∗‖ ≡ b̂ ·B∗ and B∗ ≡ ∇× A∗. In our model
the Jacobian is time-independent even in the time-varying
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Table 1 Comparison among the no flow model, the Hamiltonian and Symplectic models for flowing plasmas.

No flow Hamiltonian Symplectic

ρgc ρ ρ + ρE ρ

A∗ A + (m/q)Ub̂ ← A + (m/q)(D + Ub̂)

H qϕ + m
2 U2 + μB qϕ + m

2 U2 + μB − m
2 D2 qϕ + m

2 U2 + μB + m
2 D2

B∗‖ B + (m/e)Ub̂ · ∇ × b̂ ← B + (m/e)b̂ · ∇ × (D + Ub̂)

pζ qAζ + mUbζ ← qAζ + mDζ + mUbζ

flow case, while it can have time dependence through the
flow term in A∗ in the conventional models. Moreover,
since the symplectic part of the Lagrangian is the same as
the one without flow, the guiding-centre Hamilton equa-
tions, Żi = {Zi,H}, keep the general form in the no flow
case:

Ẋ = ε−1 B∗

mB∗‖

∂H
∂U
+

b̂
qB∗‖
× ∇H, (10)

U̇ = −ε−1 B∗

mB∗‖
· ∇H, (11)

μ̇ ≡ 0, (12)

ξ̇ = ε−2 q
m
∂H
∂μ
. (13)

On the other hand, additional terms with time derivative
of D appear in the conventional models and the Hamilton
equation for the guiding-centre position is written as

Ẋ = ε−1 B∗

mB∗‖

∂H
∂U
+

b̂
qB∗‖
×∇H + ε

m
qB∗‖

b̂× ∂D
∂t
. (14)

The additional term in the above shows the polarisation
drift.

Another advantage of the model is the expression of
the toroidal angular momentum. If the Lagrangian does
not depend on the toroidal angle ζ, the Euler-Lagrange
equation or Noether’s theorem states that its canonically
conjugate momentum

pζ ≡ ∂Lp

∂ζ̇
= eA∗ζ = eAζ + mUbζ (15)

is a constant of motion, where Aζ and bζ are covariant ζ
components of A and b̂, respectively. The toroidal angular
momentum pζ is the same as the one without flow since the
symplectic part of the Lagrangian is common. Therefore,
we can follow the standard analysis for guiding-centre or-
bits [30]. Comparison results among the no flow model,
the present model and the conventional models for flowing
plasmas are summarised in Table 1 in which the guiding-
centre Hamiltonian up to O(ε) is also included. In Table 1,
the present model is denoted by “Hamiltonian” since all
flow terms are confined in the Hamiltonian, while “Sym-
plectic” denotes the conventional models whose symplec-
tic part has the flow term. It is seen that both the Hamilto-
nian and Symplectic models agree with the no flow model
in the no flow limit.

3. Push-Forward Representation of
General Particle Fluid Moments

3.1 Perturbative expansion of the exact rep-
resentation

We consider a general scalar particle fluid moment de-
fined by

mkl(r) ≡
∫ (

mw2

2B

)k

vl‖ f δ
3(x − r)d3xd3u, (16)

where f is the particle distribution function and k, l ∈ N.
The particle fluid moment can be written in terms of the
push-forward transformation associated with the guiding-
centre transformation T−1∗

GC and the guiding-centre distribu-
tion function F ≡ T−1∗

GC f as

mkl(r) =
∫

d6ZJ(Z)

⎡⎢⎢⎢⎢⎢⎣T−1∗
GC

⎧⎪⎪⎨⎪⎪⎩
(

mw2

2B

)k

(v‖)l

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ (Z)

× F(Z)δ3(T−1
GCx − r), (17)

where T−1
GCx = X + ρ + ρE + · · · denotes the particle po-

sition in the guiding-centre phase space. Push-forward of
a scalar function is shown in Fig. 1 schematically. Here
we consider a scalar function on z denoted by f and the
guiding-centre transformation TGC. We can represent f (z)
in terms of Z through z = T−1

GCZ and obtain a function on
Z, T−1∗

GC f ≡ F. Since T−1∗
GC “pushes forward” f on z to F

on Z, it is called the push-forward transformation associ-
ated with TGC. Note that the action of the transformation
is opposite to appearance of the symbol. Conversely, we
can obtain a function on z, T∗GCG, from a function on Z
denoted by G. Then T∗GC is called the pull-back transfor-
mation associated with TGC.

The formal exact push-forward representation (17)
can be explicitly expressed by an infinite series. The in-
finite series may be approximated by terms at a few orders
in ε under the condition that the Larmor radius is small
compared to the gradient scale length of the fluid moments
and the electromagnetic fields. Equation (17) is written ap-
proximately as

mkl(r) 	
∫

d6ZJ(Z)(μ −Gμ1)kUlF(Z)

× δ3(X + ρ + ρE − r), (18)
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Fig. 1 Push-forward of a scalar function associated with the
phase space transformation.

where Gμ1 is kept since it has the nonvanishing gyroaver-
aged part due to the E × B flow as mentioned in the pre-
vious section. The flow contribution to 〈Gμ1〉 is also found
in the Symplectic models for flowing plasmas [5, 6]. This
is because the perpendicular particle velocity is measured
in a frame moving with flow. Since the E × B drift veloc-
ity D is subsonic in most cases, we assume D ∼ ε1/2vti in
the following. Expanding the right hand side of the above
equation perturbatively, we have the push-forward repre-
sentation of mkl up to O(ε2) [31]

mkl(r) = Mkl(r) + ∇2
⊥

Mk+1l(r)
2qΩ

+ (k + 1)∇ ·
[

Mkl(r)
BΩ

∇⊥ϕ(r)

]

− kD(r) · b̂ × ∇Mkl(r)
Ω

, (19)

where the guiding-centre fluid moment Mkl is defined by

Mkl ≡
∫
μkUlJFdUdμdξ. (20)

The last term on the right hand side of Eq. (19) does not
appear in the one obtained from the standard gyrokinetic
theory in which the lowest order magnetic moment is de-
fined by mv2⊥/2B [16]. This term cancels a part of the third
term and Eq. (19) is rewritten as

mkl 	 Mkl +
1

2qΩ
∇2
⊥Mk+1l + (k + 1)

Mkl

BΩ
∇2
⊥ϕ

+ D · b̂ × ∇Mkl(r)
Ω

, (21)

where terms with ∇B have been neglected since they are of
higher order. The last term is rewritten as

D · b̂ × ∇Mkl

Ω
= −ρE · ∇Mkl, (22)

which shows the modification to Mkl by ρE . This term,
which is also rewritten as ∇⊥ϕ·∇Mkl/(BΩ), would be com-
parable to the third term with ∇2⊥ϕ if the gradient scale
length of Mkl is similar to that of ϕ. For k = l = 0, we have
the push-forward representation of particle density,

n = N + ∇2
⊥

P⊥
2qΩB

+ ∇ ·
[ N

BΩ
∇⊥ϕ

]

	 N +
1

2qΩB
∇2
⊥P⊥ +

N
BΩ
∇2
⊥ϕ +

∇⊥ϕ · ∇N
BΩ

(23)

where n ≡ m00, N ≡ M00 and P⊥ ≡ BM10 are particle den-
sity, guiding-center density and guiding-centre pependicu-
lar pressure, respectively. Difference between mkl and Mkl

may be important at the tokamak H-mode edge pedestal
with the strong radial electric field and the steep radial
pressure gradient. For example, the maximum correc-
tion to N by the term with ∇2⊥ϕ can reach up to 10% if
shear of the radial electric field Er is |E′r | ∼ 107 V/m2 and
Ω ∼ 108 s−1 with B ∼ 1 T which are relevant to the DIII-D
H-mode edge [32].

We consider the push-forward repsentation in the
Symplectic models for comparison. Since the particle po-
sition in the guiding-centre phase space is given by T−1

GCx 	
X + ρ in the conventional models, the push-forward repre-
sentation of mkl is written as

mkl(r) 	
∫

d6ZJ(Z)(μ −Gμ1)kUl

× F(Z)δ3(X + ρ − r), (24)

where Gμ1 remains due to the same reason in our model.
Under the subsonic ordering, expanding the right hand side
of the above equation yields

mkl(r) = Mkl(r) + ∇2
⊥

Mk+1l(r)
2qΩ

+ k∇ ·
[

Mkl(r)
BΩ

∇⊥ϕ(r)

]

− kD(r) · b̂ × ∇Mkl(r)
Ω

. (25)

The terms with ϕ vanish for k = 0 since ρE is not included
in the guiding-centre transformation for the guiding-centre
position. Hence, the push-forward representation of parti-
cle density becomes

n = N + ∇2
⊥

P⊥
2qΩB

. (26)

Instead, the polarisation drift term appears in the Hamilton
equation as seen in Eq. (14).

3.2 Correspondence to the standard gyroki-
netic model

The modern standard gyrokinetic model is formulated
through the two-step phase space transformation which
consists of the guiding-centre transformation TGC and the
transformation from the guiding-centre phase space to the
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Fig. 2 Phase space transformations in the standard gyrokinetic formulation.

gyro-centre phase space TGy as shown in Fig. 2 [1]. In
the standard formulation, small perturbations of electro-
magnetic potentials are introduced after the guiding-centre
transformation and then the gyro-centre transformation is
performed with the small parameter εδ ∼ qϕ/T � 1.
Here we consider a perturbation of the electrostatic po-
tential only. Two exact push-forward representations are
possible in the standard gyrokinetic model because of the
two phase space transformations. The exact representation
usually used is given by [33]

mkl(r) =
∫

d6 Z̄J(Z̄)

⎡⎢⎢⎢⎢⎢⎣T−1∗
GC

⎧⎪⎪⎨⎪⎪⎩
(

mv2⊥
2B

)k

vl‖

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ (Z̄)

× [T∗GyF̄](Z̄)δ3([T−1
GCx](Z̄) − r), (27)

where Z̄ denotes the gyro-centre coordinates, J is the
Jacobian of the guiding-centre transformation, T∗Gy is
the pull-back transformation associated with TGy, and
[T−1

GCx](Z̄) 	 X̄+ρ(Z̄). Recall that originally T−1
GCx denotes

the particle position in the guiding-centre phase space.
[T−1

GCx](Z̄), however, no longer denotes the particle posi-
tion. The particle position in the gyro-centre phase space is
expressed as T−1

GyT−1
GCx. It is seen that Eq. (27) is the hybrid

representation with the push-forward and pull-back trans-
formations. An advantage of the hybrid representation is
that effects of the electrostatic potential are contained only
in the pull-back of F̄, T∗GyF̄, as

T∗GyF̄ 	 F̄ + εδ{S 1, F̄} 	 F̄ + εδ
eϕ̃
B
∂F̄
∂μ̄
, (28)

where S 1 = (e/Ω)
∫
ϕ̃dξ̄ is the scalar function gener-

ating the gyro-centre transformation at first order, ϕ̃ =
ϕ(X̄ + ρ̄) − 〈ϕ(X̄ + ρ̄)〉 is the gyrophase dependent part
of the electrostatic potential, ρ̄ = ρ(Z̄), and 〈·〉 denotes the
gyrophase average. Although the exact representation (27)
gives the push-forward representation similar to Eq. (19) in
the appropriate limit as shown in Appendix B, the appear-
ance of Eq. (27) seems to be different from Eq. (17). The
incongruity of appearance is resolved by considering the
alternative exact representation in the standard gyrokinet-
ics [17],

mkl(r) =
∫

d6 Z̄J(Z̄)

⎡⎢⎢⎢⎢⎢⎣T−1∗
Gy T−1∗

GC

⎧⎪⎪⎨⎪⎪⎩
(

mv2⊥
2B

)k

vl‖

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ (Z̄)

× F̄(Z̄)δ3(T−1
GyT−1

GCx − r). (29)

Similarity between Eqs. (17) and (29) is apparent. The par-
ticle position in the gyro-centre phase space, T−1

GyT−1
GCx, is

written as

T−1
GyT−1

GCx = X̄ + ερ̄ + εδερ̄gy + · · · , (30)

where ρ̄gy = −{S 1, X̄ + ρ̄} is the gyro-centre displace-
ment vector associated with the gyro-centre transforma-
tion. The gyroaverage of ρ̄gy corresponds to ρE in our
model as mentioned before and yields the term with ϕ in
the push-forward representation. It is noted that although
ρ̄gy ∼ O(ε2) under the standard ordering ε ∼ εδ, ρ̄gy yields
the O(ε) term in the push-forward representation by the as-
sumption that the wavelength of ϕ is comparable to ρ:

εεδ

∫
d6 Z̄J F̄ρ̄gy · ∇̄δ3(X̄ − r)

= −εδ
∫

d6 Z̄δ3(X̄ − r)∇̄ · (ρ̄gyJ F̄).

The standard gyrokinetic model is formulated for per-
turbations with small amplitude and short wavelength
[1, 33]. The small amplitude assmuption for the electro-
static potential ϕ is described as qϕ/T ∼ εδ � 1 formally.
However, ϕ has the gauge freedom and its amplitude solely
has no meaning. Therefore more appropriate assumption is
qρ·∇⊥ϕ/T � 1 which means that the E×B drift velocity is
much smaller than the thermal velocity. This condition is
satisfied not only in the standard gyrokinetic regime with
qϕ/T ∼ εδ and k⊥ρ ∼ 1 but also in the long wavelength
regime with qϕ/T ∼ 1 and k⊥ρ ∼ ε where k⊥ is the perpen-
dicular wavenumber of ϕ. Based on the observation above,
it was claimed that the regime of validity of the standard
gyrokinetic model can be extended into the long wave-
length regime [34]. This interpretation seems to be suc-
cessfully applied to the gyro-centre transformation for the
Hamiltonian or the phase space Lagrangian. It is, however,
not necessarily true for the gyrokinetic quasi-neutrality
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(polarisation) equation and the gyrokinetic Poisson equa-
tion either which is usually used to obtain ϕ. This is be-
cause the term with ϕ in the push-forward representation
which results from ρ̄gy goes to higher order for long wave-
length. Recall that the push-forward representation of par-
ticle density appears in the reduced quasi-neutrality equa-
tion and the reduced Poisson equation. If the term from
ρ̄gy which is associated with gyro-centre transformation
goes to O(ε2), we should also consider the O(ε2) displace-
ment vector associated with guiding-centre transformation
in Eq. (30). Generally the guiding-centre transformation
for x is written as [1, 19, 21]

x = X − εGX
1 − ε2

(
GX

2 −
1
2

G1 · dGX
1

)
+ · · · , (31)

where Gn is the nth-order vector field generating the
guiding-centre transformation, and Gn · d = G j

n∂ j. The
usual gyroradius vector is given by ρ = −GX

1 in the stan-
dard model. Explicit expressions for the other compo-
nents of G1 and GX

2 are complicated even in the standard
model [1, 6]. They are given in Appendix A. Since in the
standard gyrokinetic formulation the electric field is not
considered in the guiding-centre transformation, the O(ε2)
piece,

ρB ≡ −
(
GX

2 −
1
2

G1 · dGX
1

)
, (32)

is related to the nonuniformity of magnetic field only [5].
Hence, we have to keep ρB in Eq. (30) when the gradient
scale length of the magnetic field LB is similar to that of
the electric field LE . Besides, spatial variation of ρ should
be considered if the gradient scale length of the distri-
bution function LF is similar to LB. On the other hand,
these pieces can be dropped in large aspect ratio tokamaks
and the H-mode edge regions where LE and LF are much
shorter than LB.

4. Pull-Back Representation of Guid-
ing-Centre Fluid Moments
Inverse of the push-forward representation is the pull-

back representation in which the guiding-centre fluid mo-
ments are represented in terms of the particle fluid mo-
ments. The pull-back representation is obtained easily if
the push-forward representation is known. From Eq. (19)
we have

Mkl(r) = mkl(r) − ∇2
⊥

mk+1l(r)
2qΩ

− (k + 1)∇ ·
[
mkl(r)

BΩ
∇⊥ϕ(r)

]

+ kD(r) · b̂ × ∇mkl(r)
Ω

. (33)

The representation can be also derived from the exact pull-
back representation,

Mkl(r) =
∫

d3xd3u
[
T∗GC(μkUl)

]
(x, u)

× f (x, u)δ3(TGCX − r), (34)

where T∗GC is the pull-back transformation associated with
the guiding-centre transformation and TGCX denotes the
guiding-centre position in the particle phase space. From
the guiding-centre transformation shown in Eqs. (1)-(3),
the pull-back representation is written explicitly as

Mkl(r) 	
∫

d3xd3u

(
mw2

2B
+Gμ1

)k

vl‖ f

× δ3(x − ρ − ρE − r). (35)

Under the ordering D ∼ ε1/2vti, the pull-back representa-
tion of Mkl is expanded up to O(ε2) as

Mkl(r) = mkl(r) + ∇2
⊥

mk+1l(r)
2qΩ

− (k + 1)∇ ·
[
mkl(r)

BΩ
∇⊥ϕ(r)

]

+ kD(r) · b̂ × ∇mkl(r)
Ω

−
∫

d3xd3u

(
mw2

2B

)k

vl‖ fρ · ∇δ3(x − r).

(36)

The last term does not vanish since the particle distribution
function is dependent on the gyrophase. Using f̃ 	 −ρ ·
∇〈 f 〉 [35] and integrating by parts, we have

∫
d3xd3u

(
mw2

2B

)k

vl‖ fρ · ∇δ3(x − r) 	 ∇2
⊥

mk+1l(r)
qΩ

,

(37)

where we have used

〈ρρ〉 = mw2

2B
I − b̂b̂

qΩ
. (38)

Then, Eq. (36) agrees with Eq. (33).

5. Variational Derivation of Push-
Forward Representation of Particle
Density

5.1 Reduced Vlasov-Poisson variational
principle

Although the perturbative expansion of the exact rep-
resentation is straightforward, as shown in the previous
sections, we have to consider the vector field generating
the phase space transformation in the expansion. The push-
forward representation of particle density can be obtained
from the reduced single particle Lagrangian by a varia-
tional method in which we need not treat the phase space
transformation directly. To this end, we consider a func-
tional derivative of the action functional I =

∫ t2
t1

Ldt with a
Lagrangian for the Vlasov-Poisson system [36],
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L =
∑

s

∫
d6Z0Js(Z0)Fs(Z0, t0)

× Lps[Z s(Z0, t0; t), Ż s(Z0, t0; t), t]

−
∫

d3x
1

4μ0
F : F, (39)

where
∑

denotes a sum over species, Z s(Z0, t0; t) denotes
the guiding-centre coordinates of the particle at t with the
initial condition Z s(Z0, t0; t0) = Z0, μ0 is permeability of
vacuum, the electromagnetic field tensor F is defined by
Fμν ≡ ∂μAν − ∂νAμ, and F : F ≡ FμνFμν. When we
use ημν = ημν = diag(−1,+1,+1,+1) as the Minkowski
spacetime metric, the covariant four vector potential and
the four gradient operator are Aμ = (−ϕ/c, A) and ∂μ =
((1/c)∂t,∇), respectively [37]1. Lps is the reduced single
particle Lagrangian of species s such as shown in Eq. (9).
δI/δϕ(r) = 0 yields a reduced Poisson equation,

ε0∇2ϕ(r) =
∑

s

∫
d6ZJsFs

δLps

δϕ(r)
, (40)

where ε0 is permittivity of vacuum. Recalling the exact
Poisson equation,

ε0∇2ϕ(r) = −
∑

s

qsns, (41)

we can regard the right hand side of Eq. (40) as the negative
of charge density in terms of the guiding-centre quantities.
The requirement that the charge density should agree with∑

qsns yields the push-forward representation of particle
density,

n(r) = −1
q

∫
d6ZJ(Z)F(Z)

δLp(Z)

δϕ(r)
, (42)

where the subscript s is suppressed. This representation
is general and valid even if the symplectic part of Lp con-
tains ϕ as in the Symplectic models [5]. If, as in the present
case, ϕ appears in the Hamiltonian only, the above repre-
sentation is reduced to

n(r) =
1
q

∫
d6ZJ(Z)F(Z)

δH(Z)
δϕ(r)

. (43)

We can obtain an explicit push-forward representation
from this equation if the guiding-centre Hamiltonian is
known. The push-forward representation of particle den-
sity is obtained also by another variational principle with
constrained variation [21].

5.2 Push-forward representation of particle
density

We can obtain Eq. (23) by considering the following
guiding-centre Hamiltonian with subsonic flow,

1The alternative Minkowski spacetime metric tensor is ημν =
diag(+1,−1,−1,−1). In this case, the covariant four vector potential is
Aμ = (φ/c,−A) and the four gradient operator is ∂μ = ((1/c)∂t ,∇). As a
result, the sign of Fμν flips. Since the sign of Fμν also flips, F : F does not
change.

H(X,U, μ) = qϕ(X) +
m
2

U2 + μB(X)−m
2

D(X)2

+
m
2q
μb̂ · ∇ × D(X), (44)

which is valid when the gradient scale length of the electric
field is much shorter than that of the magnetic field [4]. It
is similar to the standard gyrokinetic Hamiltonian in the
long wavelength limit. Underlined terms include ϕ. From
the lowest order Hamiltonian H0 = qϕ, we have the first
term on the right hand side of Eq. (23) as

1
q

∫
d6ZJF

δH0

δϕ(r)
=

∫
d6ZJFδ3(X − r) = N(r).

(45)

The first order Hamiltonian, H1 = mU2/2 + μB − mD2/2,
yields

1
q

∫
d6ZJF

δH1

δϕ(r)
= ∇ ·

[
N(r)
BΩ
∇⊥ϕ(r)

]
. (46)

Finally the second order Hamiltonian, H2 = (mμ/2q)b̂ ·∇×
D, yields

1
q

∫
d6ZJF

δH2

δϕ(r)
= − 1

2q
∇ ·

[(
∇ × P⊥

B
b̂
)
× b̂
Ω

]

	 ∇2
⊥

P⊥
2qΩB

, (47)

and all terms in Eq. (23) have been derived. It is noted
that although the P⊥ term has been approximated in the
push-forward representation for comparison with Eq. (23)
here, any approximation should be made to the Hamilto-
nian and the push-forward representation should be derived
rigorously from the approximated Hamiltonian for consis-
tency. In the above case, H2 should be approximated as
H2 	 (μ/2Ω)∇2⊥ϕ.

In order to obtain the push-forward representation of
particle density in the Symplectic model by the variational
method, we must consider the symplectic part of the phase
space Lagrangian as well as the Hamiltonian. The guiding-
centre Lagrangian in the Symplectic model is given by [6]

Lp =
[
qA + m(Ub̂ + D)

]
· Ẋ + m

q
μξ̇ − H, (48)

with the Hamiltonian,

H = qϕ +
m
2

U2 + μB+
m
2

D2 +
m
2q
μb̂ · ∇ × D. (49)

The only difference in the Hamiltonian from Eq. (44) is the
sign in front of mD2/2. The Hamiltonian gives

1
q

∫
d6ZJF

δH
δϕ(r)

= N − ∇ ·
[ N

BΩ
∇⊥ϕ

]
+ ∇2

⊥
P⊥

2qΩB
, (50)

which is the same as the above except the sign in front of
the term with ϕ. In contrast to the Hamiltonian model, the
Lagrangian (48) has D in its symplectic part, which yields
an additional term in the push-forward representation as
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n =
∫

d6Zδ3(X − r)∇ ·
[
JF

Ẋ × b̂
Ω

]

+
1
q

∫
d6ZJF

δH
δϕ(r)

. (51)

It is found that the first term on the right hand side cancels
with the term with ϕ in the Hamiltonian part by noting Ẋ×
b̂ 	 D × b̂ and then Eq. (26) is obtained.

Thus the variational method only needs the guiding-
centre Hamiltonian (or Lagrangian) and doesn’t need de-
tails of the guiding-centre transformation. Therefore, this
method is very useful in the modern reduced kinetic for-
mulation based on the Lie-transform perturbation analysis.
We derive the push-forward representation in the transonic
case by the variational method. When the flow speed is
comparable to the thermal speed, we have to consider the
Hamiltonian,

H = qϕ +
(m

2
U2 + μB − m

2
D2

)

+
1

2Ω

(
μ +

mD2

2B

)
∇2
⊥ϕ, (52)

which is still valid when the gradient scale length of the
electric field is much shorter than that of the magnetic
field [4]. The Hamiltonian yields the push-forward repre-
sentaion with additional terms,

n = N + ∇ · ∇⊥
[

1
2qΩB

(
P⊥ +

NmD2

2

)]

+ ∇ ·
[(

1 − ∇
2⊥ϕ

2ΩB

)
N

BΩ
∇⊥ϕ

]
. (53)

The additional terms appear as corrections to the polarisa-
tion density. The first one is the flow correction to P⊥. The
second one is the correction by the vorticity which gives a
term proportional to enstrophy density. They are nonlinear
to ϕ because they come from the cubic terms of ϕ in the
Hamiltonian.

6. Push-Forward Representation of
Particle Flux
The push-forward representations of the scalar fluid

moments have been discussed in the previous sections. In
this section, we consider push-forward representation of a
vector fluid moment, a particle flux, by following Refs.
[20, 21]. The particle flux is defined in the particle phase
space as

Γ(r) ≡
∫

f uδ3(x − r)d3xd3u. (54)

Similar to the scalar fluid moments, Γ(r) can be expressed
as an integral in the guiding-centre phase space,

Γ(r) =
∫

d6ZJFT−1
GCuδ

3(T−1
GCx − r), (55)

where T−1
GCu 	 Ẋ + ρ̇gc is push-forward of the particle ve-

locity.

Expanding the delta function in powers of ρgc and in-
tegrating by parts, we have

Γ = Γgc + Γpol + Γmag, (56)

where

Γgc =

∫
d3vẊF (57)

is the guiding-centre flux,

Γpol =
∂

∂t

∫
d3vρgcF (58)

is the polarisation flux,

Γmag = ∇ ×
{∫

d3vF

[
ρgc ×

(
1
2
ρ̇gc + Ẋ

)]}
(59)

is the magnetisation flux, and d3v = JdUdμdξ. In the
Symplectic models, ρgc is the usual Larmor radius vector
ρ. Then 〈ρgc〉 = 0 and Γpol vanishes. Instead, as shown in
Eq. (14), the polarisation drift term

Vpol =
b̂
Ω
× ∂D
∂t

(60)

is included in the guiding-centre drift Ẋ and it yields the
polarisation flux. On the other hand, Ẋ in the Hamilto-
nian model does not include the polarisation drift Vpol.
This is because of the difference in the symplectic part of
the guiding-centre Lagrangian mentioned before. Recall
that the purpose of the Hamiltonian model is to exclude
the time derivative terms from the guiding-centre Hamil-
ton equations. In the Hamiltonian model, ρgc is not purely
oscillatory and 〈ρgc〉 = ρE . Then Γpol becomes

Γpol =
b̂
Ω
× ∂
∂t

(N D). (61)

Besides, while the second part of Γmag including ρgc × Ẋ
also vanishes due to 〈ρgc〉 = 0 in the Symplectic models, it
does not in the Hamiltonian model.

7. Summary
We have considered the push-forward representation

of fluid moments for the two basic types (Hamiltonian and
Symplectic [1]) of guiding-centre models for plasmas with
large flow velocity. In each case, variation of the sys-
tem Lagrangian with respect to the electrostatic potential
yields the push-forward representation of particle density
in a unique way.

The explicit representations which depend on details
of the guiding-centre transformations have been derived
from the exact representation by the perturbative expan-
sion in the subsonic flow case. The representation in the
Hamiltonian model is similar to that in the standard gy-
rokinetic model in the long wavelength limit since the sym-
plectic part of the phase space Lagrangian is common. Use
of the relative perpendicular particle velocity to the flow
for the definition of the magnetic moment causes the ad-
ditional flow term in the representation. However, this
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term does not appear in the representation of particle den-
sity. The representation in the Symplectic model also has
the additional flow term due to the same reason, while the
representation of particle density in the Symplectic model
has no polarisation density term with the electrostatic po-
tential which appears in the Hamiltonian model and in
the standard gyrokinetic model. This is due to the dif-
ference in the transformation for the guiding-centre po-
sition. Although the appearance of the exact representa-
tion usually used in the standard gyrokinetic formulation
is different from that in the Hamiltonian model for flow-
ing plasmas, the correspondence between the two mod-
els becomes apparent by considering the alternative exact
representation in the standard gyrokinetic model. Besides,
the observation of the alternative representation shows that
the second order displacement vector associated with the
guiding-centre transformation should be considered on an
equal footing as the gyro-centre displacement vector in
the push-forward representation in the gyrokinetic model
when the gradient scale length of the electrostatic poten-
tial is comparable to that of the magnetic field. The push-
forward representation of particle density can also be ob-
tained from the guiding-centre Lagrangian (or Hamilto-
nian) by the variational method. The variational method
confirms the uniqueness of the representation for any par-
ticular Lagrangian. This method is usuful in the modern re-
duced kinetic formulation based on the Lie-transform per-
turbation method. The results obtained by the perturbative
expansion are recovered from the appropriate Lagrangians.
The representation of particle density in the transonic case
has been obtained by the variational method and the cor-
rections to the polarisation density have been found.
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Appendix A. Vector Field Generat-
ing the Guiding-Centre Transfor-
mation
The components of the first order generating vector

field are

GX
1 = −ρ − ρE , (A.1)

GU
1 =
μ

q
(a1 : ∇b̂ + b̂ · ∇ × b̂)

+
1
2

W
Ω

ĉ · ∇ × (D∗ + Ub̂)

+
1

2Ω
D · ∇ × (D∗ + Ub̂)

+
W

2BΩ
∇⊥ϕ · ∇b̂ · ĉ + 1

2
b̂ · F, (A.2)

Gμ1 = −μGX
1 · ∇ log B − m

2B
D · F

+
m

2Ω
D ·Wĉ

b̂
2B
· ∇ ×

(
D∗ + Ub̂

)

− m
2B2Ω

∇⊥ϕ · ∇D∗ ·Wĉ − μ
Ω

a1 : ∇D∗

− m
BΩ

Wĉ × b̂ · ∂D
∂t

− mU
B

[
Wĉ
2Ω
· ∇ ×

(
D∗ + Ub̂

)
+

1
2

b̂ · F
]

−7
6
μ

Ω
(b̂ × D) · ∇ log B − μ

Ω
b̂ · ∇ × D∗, (A.3)

Gξ1 = GX
1 · R +

q
3

∂GX
1

∂μ
· F − q

m

∂S ′3
∂μ
, (A.4)

S ′3 =
m
q

[
− m

2B
D∗ · F̂

+
m

4BΩ
{(D ·Wâ)b̂ − 2UWâ}∇ ×

(
D∗ + Ub̂

)

− m
2B2Ω

∇⊥ϕ · ∇D∗ ·Wâ

− μ
Ω

a2 : ∇
(
D∗ +

2
3

D
)
− mW

BΩ
ĉ · ∂D
∂t

+
μ

2BΩ
a1 : (∇ϕ)(∇ log B) − 2

3
W
Ω
μĉ · ∇ log B

+
m

3BΩ
(D ·Wâ)b̂ · ∇ ×

(
D∗ +

1
2

Ub̂

) ]
, (A.5)

where W = (2μB/m)1/2, R = (∇ĉ) · â, â = b̂ × ĉ, D∗ =
D + Ub̂,

a1 = − âĉ + ĉâ
2
, a2 =

ĉĉ − ââ
4
, (A.6)

F =
3
2

(D · ρ)∇ log B − (∇D) · ρ, (A.7)

F̂ = −3
2

W
Ω

D · ĉ∇ log B + (∇D) · W
Ω

ĉ. (A.8)

The spatial component of the second order vector field is
given by

GX
2 =

1
2

(
g
μ
1

∂ρ

∂μ
+ g
ξ
1

∂ρ

∂ξ
− b̂ × F
Ω

)

− GX
1

2Ω
b̂ · ∇ × (D∗ + Ub̂) − 1

m

∂S ′3
∂U

b̂, (A.9)

where gμ1 = Gμ1 + μG
X
1 · ∇ log B and gξ1 = Gξ1 − GX

1 · R.
When there is no electric field, they reduce to the standard
results [1, 38]:

GX
1 = −ρ, (A.10)

GU
1 =
μ

q
(a1 : ∇b̂+b̂ · ∇ × b̂)+

UW
Ω

ĉ · ∇ × b̂, (A.11)

Gμ1 = μρ · ∇ log B − Uμ
Ω

a1 : ∇b̂

− mU2

B
W
Ω

ĉ · ∇ × b̂ − Uμ
Ω

b̂ · ∇ × b̂, (A.12)
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Gξ1 = −ρ · R +
mU2

2μB
W
Ω

â · ∇ × b̂ +
U
Ω

a2 : ∇b̂

+
W
Ω

ĉ · ∇ log B, (A.13)

S ′3 =
m
q

[
−mU2W

BΩ
â · ∇ × b̂ − Uμ

Ω
a2 : ∇b̂

− 2
3

W
Ω
μĉ · ∇ log B

]
, (A.14)

and

GX
2 =

1
2

(
g
μ
1

∂ρ

∂μ
+g
ξ
1

∂ρ

∂ξ

)
+ρ

(U
Ω

b̂ · ∇ × b̂
)
− 1

m

∂S ′3
∂U

b̂.

(A.15)

Then, the second order guiding-centre displacement vector
ρB is given by [5]

ρB = −
1
Ω2

[
U2b̂ · ∇b̂

+ UW

{
1
2

(b̂ · ∇ × b̂ − a1 : ∇b̂)â

+ 2(b̂ · ∇b̂ · ĉ)b̂ + (a2 : ∇b̂)ĉ

}

+
μB
m

{(
1
2
∇ · b̂ − a2 : ∇b̂

)
b̂

+
3
2
∇⊥ log B + 2a2 · ∇ log B

} ]
. (A.16)

Appendix B. Push-Forward Repre-
sentation in the Standard Gyroki-
netic Model
The formal exact representation in the standard gy-

rokinetic model (27) is written approximately as

mkl(r) =
∫

d6 Z̄J(Z̄)μ̄kŪl

[
F̄ + εδ

qϕ̃
B
∂F̄
∂μ̄

]

× δ3(X̄ + ρ̄ − r), (B.1)

where ϕ̃ = ϕ(X̄ + ρ̄) − 〈ϕ(X̄ + ρ̄)〉. Noting

ϕ(X̄ + ρ̄) = exp(ρ̄ · ∇̄)ϕ(X̄),

δ3(X̄ + ρ̄ − r) = exp(ρ̄ · ∇̄)δ3(X̄ − r),

we have

mkl(r) =
∫

d6 Z̄J(Z̄)μ̄kŪl

×
[
F̄ + εδ

q
B

(eρ̄·∇̄ϕ(X̄) − 〈eρ̄·∇̄ϕ(X̄)〉)∂F̄
∂μ̄

]

× eρ̄·∇̄δ3(X̄ − r)

=

∫
d6 Z̄δ3(X̄ − r)e−ρ̄·∇̄

[
J(Z̄)μ̄kŪl

×
{

F̄ + εδ
q
B

(eρ̄·∇̄ϕ(X̄) − 〈eρ̄·∇̄〉ϕ(X̄))
∂F̄
∂μ̄

} ]

= M̄kl(r)

+ εδ

∫
d6 Z̄δ3(X̄ − r)e−ρ̄·∇̄

×
[
J(Z̄)μ̄kŪl q

B
∂F̄
∂μ̄

(eρ̄·∇̄ϕ(X̄) − 〈eρ̄·∇̄〉ϕ(X̄))

]

(B.2)

where spatial variation of ρ̄ has been neglected. The first
term is a gyroaveraged gyrofluid moment defined by [7,14]

M̄kl(X̄) ≡
∫

dŪdμ̄dξ̄e−ρ̄·∇̄J(Z̄)μ̄kŪlF̄, (B.3)

which is represented in terms of gyrofluid moments as

M̄kl = Mkl + ∇2
⊥

Mk+1l

2qΩ
+ · · · , (B.4)

where Mkl is the gyrofluid moment defined by

Mkl(X̄) ≡
∫
μ̄kŪlJ(Z̄)F̄(Z̄)dŪdμ̄dξ̄. (B.5)

When F̄ is approximated by a Maxwellian FM ∝
exp(−μ̄B/T⊥), we have

∂F̄
∂μ̄
= − B

T⊥
FM , (B.6)

which is widely used in gyrokinetic and gyrofluid mod-
els. Using this approximation and neglecting action of the
operator exp(−ρ̄ · ∇̄) on FM , B and T⊥, the O(εδ) part in
Eq. (B.2) is reduced as∫

d6 Z̄δ3(X̄ − r)e−ρ̄·∇̄

×
[
J μ̄kŪl q

B
∂F̄
∂μ̄

(eρ̄·∇̄ϕ(X̄) − 〈eρ̄·∇̄〉ϕ(X̄))

]

=

∫
d6 Z̄δ3(X̄ − r)J μ̄kŪl q

T⊥
FM

×
(
e−ρ̄·∇̄〈eρ̄·∇̄〉ϕ(X̄) − ϕ(X̄)

)

=

∫
d6 Z̄δ3(X̄ − r)J μ̄kŪl q

T⊥
FM

(
〈eρ̄·∇̄〉2 − 1

)
ϕ(X̄),

(B.7)

where we have used 〈eρ̄·∇̄〉 = 〈e−ρ̄·∇̄〉. For k = l = 0 with
the Maxwellian approximation in the O(εδ) part, we have

n(r) = N̄(r) + n0(Γ0 − 1)
qϕ(r)

T⊥
, (B.8)

where n0 =
∫

FMJdŪdμ̄dξ̄ and Γ0 is the operator defined
by

Γ0 ≡ 1
n0

∫
dŪdμ̄dξ̄JFM〈eρ̄·∇̄〉2. (B.9)

In the wavenumber space this operator becomes I0(b)e−b

in which I0(b) is the modified Bessel function of the ze-
roth kind and its argument is b = k2⊥ρ2 with the ther-
mal gyroradius ρ = vt/Ω. When the gyroradius for elec-
trons is neglected, electron guiding-centre density coin-
cides with the electron particle density. Then, the above
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push-forward representation of particle density can be in-
terpreted as the gyrokinetic or gyrofluid quasi-neutrality
condition between electrons and singly charged ions,

ne = N̄i + ni0(Γ0 − 1)
eϕ
T⊥i
. (B.10)

This equation is also derived by variational methods [36,
39, 40]. When we take the long wavelength limit, but not
approximate ∂F̄/∂μ̄ by (−B/T⊥)FM , we have

mkl(r) = Mkl(r) + ∇2
⊥

Mk+1l(r)
2qΩ

+ (k + 1)∇ ·
[

Mkl(r)
BΩ

∇⊥ϕ(r)

]
, (B.11)

where we have assumed that (k⊥ρ)2 ∼ ε⊥ for a small O(εδ)
perturbation, (k⊥ρ) ∼ ε⊥ for a O(1) moment and ε ∼ εδ ∼
ε⊥. For k = l = 0, we have the push-forward representation
of the particle density n,

n = N + ∇2
⊥

P⊥
2qΩB

+ ∇ ·
[ N
ΩB
∇⊥ϕ

]
, (B.12)

where N and P⊥ are the gyro-centre density and the gyro-
centre perpendicular pressure defined by

N ≡
∫

F̄JdŪdμ̄dξ̄, (B.13)

P⊥ ≡
∫
μ̄BF̄JdŪdμ̄dξ̄, (B.14)

respectively.
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