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phasis on the heat flux contribution. The model is based on the moment approach and is capable of accurately
reproducing important neoclassical properties through a simple expression of the neoclassical viscosity tensor,
with the aid of the NCLASS module. Applying neoclassical transport theory in a fluid context, we confirm the
reproducibility of first-order flows, poloidal flows, neoclassical resistivity, bootstrap current and particle flux.
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1. Introduction
A one-dimensional transport code TASK/TX consist-

ing of two-fluid equations coupled with Maxwell’s equa-
tions has been developed to investigate the evolution of a
plasma self-consistently, including a radial electric field,
poloidal and toroidal rotation [1] as well as neutral trans-
port [2]. The code has been applied, for example, in the
physics research on toroidal rotation induced by the loss
of fast ions due to toroidal field ripple [3] and induced
by the charge separation of fast neutrals due to the near-
perpendicular NBIs installed in JT-60U [4].

TASK/TX typically solves the continuity equation, the
equation of motion in the radial, poloidal and toroidal di-
rections, and the thermal transport equation for electrons
and ions respectively, together with Maxwell’s equations.
The set of equations which TASK/TX solves is essen-
tially different from what a conventional transport code
solves, i.e., flux surface-averaged, one-dimensional diffu-
sive transport equations. The chief differences between
them are summarized in the following. (1) A conven-
tional code typically calculates particle transport only for
ion species due to quasi-neutrality and (2) requires an ex-
plicit flux-gradient relationship for a particle flux. (3) It
solves a magnetic diffusion equation consistent with Fara-
day’s law, Ampère’s law without the displacement current
and Ohm’s law. (4) It determines poloidal rotation solely as
an output using an external neoclassical module and pos-
sibly solves a toroidal momentum equation analogous to
a thermal transport equation. In contrast, (1) TASK/TX
solves the continuity equations for both electrons and ions
without explicit quasi-neutrality conditions and (2) also
solves an equation of motion in the radial direction, in-
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dependently. These two differences are also discussed in
Ref. [5] in detail. (3) Maxwell’s equations are solved to
describe the behavior of magnetic fields and electric fields
and the evolution of current densities is calculated by solv-
ing equations of motion for electrons. (4) Poloidal and
toroidal rotations are calculated by solving equations of
motion for ions. In that sense, the usual way for incorporat-
ing a transport model/module into a conventional transport
code cannot be directly adopted with TASK/TX [5].

A similar case holds for neoclassical transport. Neo-
classical transport plays a very important role in toroidal
plasmas, and, therefore, all chief neoclassical phenomena
have to be reproduced in each transport code for toroidal
plasmas. Even when we focus only on an ideal axisymmet-
ric plasma, there are many important neoclassical charac-
teristics that must be considered: neoclassical particle and
thermal transport, the neoclassical Ware pinch [6], neoclas-
sical resistivity, bootstrap current, neoclassically-driven
poloidal flow, the radial electric field and so forth. In con-
ventional transport codes, an external module such as the
NCLASS module [7] or the Matrix-Inversion method [8]
estimates every quantity corresponding to each neoclassi-
cal effect individually, and these quantities are then substi-
tuted into an appropriate term in the transport equations:
for example, the Ware pinch and particle diffusivity for a
particle transport equation; the neoclassical heat pinch and
thermal diffusivity for a thermal transport equation; and
neoclassical resistivity and bootstrap current for a mag-
netic diffusion equation. We, therefore, have to invent a
method for reproducing all neoclassical effects in a two-
fluid TASK/TX system.

These neoclassical transport modules build on
the neoclassical moment approach of Hirshman and
Sigmar [9]. The moment approach provides a method
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to compute all important neoclassical effects by solving
steady-state fluid momentum balance equations in a direc-
tion parallel to the magnetic field, with some kinetic treat-
ment, for particle and heat flows. Because these momen-
tum equations are roughly but essentially the same as the
equations of motion solved in TASK/TX, we conceived the
idea of adding neoclassical viscosity terms to the equations
of motion to reproduce neoclassical effects. Hopefully, we
will be able to describe self-consistently the neoclassical
effects solely by solving the set of two-fluid equations with
neoclassical viscosity terms, once we know the neoclassi-
cal viscosities.

The poloidal heat flow can drive the poloidal (particle)
flow in proportion to the temperature gradient, a fact which
will be validated in Sec. 4.3, and this effect may play a sig-
nificant role in driving the poloidal flow in a plasma with
an internal transport barrier. As will be seen in the next
section, however, TASK/TX does not include the moment
equations for heat flux, implying that it does not repro-
duce the heat flux-driven poloidal flow within the original
framework [1]. As noted in the previous research [3,4], this
driving mechanism did not play a key role because plasmas
with a moderate temperature gradient were considered. We
have to include the heat flux contribution in TASK/TX to
fulfil the condition of completeness in neoclassical trans-
port theory and to extend the applicability of the code, by
coupling TASK/TX with NCLASS.

We note that neoclassical theory as it relates to the
moment approach is found in Refs. [10, 11] in addition to
Ref. [9] and it is reviewed particularly well in Ref. [12].

The rest of this paper is organized as follows. Aspects
of the basic equations of TASK/TX in association with
this study are described in Sec. 2. Analytical investiga-
tion demonstrates the existence of first-order flows parallel
and perpendicular to the magnetic field in the TASK/TX
system, as shown in Sec. 3. Details related to neoclassi-
cal transport modeling in TASK/TX are given in Sec. 4, as
well as a demonstration of the reproducibility of poloidal
flow. Section 5 is devoted to a comparison of neoclassical
resistivity and bootstrap current calculated by TASK/TX,
NCLASS and the Sauter model [13,14]. It is demonstrated
in Sec. 6 that the radial particle flux can be reproduced ac-
curately. Finally, a summary and discussion are given in
Sec. 7.

2. Multi-Fluid Transport Modeling,
TASK/TX
We briefly describe the main equations, which become

the basis for the following discussion. Currently, the basis
equations of TASK/TX essentially build on a concentric
circular equilibrium. In this sense, the shaping effects of
an equilibrium and the Shafranov shift have not yet been
reflected in the code. The following flux surface-averaged
quantities for species s are self-consistently solved in the
code as the initial boundary value problem: the particle

density ns, the radial flow velocity usr, the poloidal and
toroidal flow velocities usθ, usφ. The equations are [1]

∂ns

∂t
= −1

r
∂
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+ esns(Eφ + usrBθ) + Fsφ, (4)

where ms and es are the mass and charge, respectively.
The perpendicular viscosity represents anomalous trans-
port contributions due to turbulent fluctuations. Here, S s

represents the source and sink terms for particles; FNC
s ,

the force related to neoclassical effects, which will be dis-
cussed in detail in the following sections; and Fsθ and Fsφ,
other forces. In this paper, we do not solve the thermal
transport equations, even though they are included in the
code. Rather, we fix the temperature profile instead to fo-
cus our attention on the neoclassical effects on particles.
Maxwell’s equations are simultaneously solved using these
equations for the evolution of the electromagnetic fields;
that is, the radial, poloidal and toroidal electric fields Er,
Eθ, and Eφ, and the poloidal and toroidal magnetic fields
Bθ and Bφ, respectively. Further details of the code are de-
scribed in Refs. [1–3].

3. First-Order Flow in TASK/TX
In this section, we recall the characteristics of first-

order flow in an axisymmetric configuration and then an-
alytically confirm that these characteristics are also in-
herently present in the TASK/TX system. We intend to
demonstrate that it is possible to achieve the results pro-
vided solely by using the radial force balance equation,
thereby indicating the validity of these results in all col-
lisionality regimes.

3.1 Transport ordering
Neoclassical transport theory relies on an ordering

used to categorize transport phenomena based on their
magnitude. The basic ordering assumption is that Larmor
radius ρ is much smaller than the macroscopic scale length
L:

δ ≡ ρ

L
� 1.

The macroscopic scale length L is typically defined by spa-
tial changes in macroscopic parameters, such as pressure.
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This ordering is called the small gyroradius ordering, drift
ordering or transport ordering. Based on this ordering, we
know that the time derivative is considerably smaller:

∂

∂t
∼ O(δ2),

and the flow velocity V is to first order in δ:

V ∼ δvth.

3.2 First-order flow perpendicular to B
3.2.1 Theory

In an axisymmetric system, the magnetic field is defined as

B = ∇φ × ∇ψ + I∇φ,
where I(ψ) = RBφ is a poloidal current and a flux function,
a function of the flux surface ψ alone, as well. A fluid
moment equation for flow velocity is given by

msns
dus

dt

∣∣∣∣∣
s
= −∇ps−∇·↔π s+esns(E+us×B)+Rs, (5)

where
↔
π s denotes the viscosity tensor and Rs, the exchange

of momentum. The convective derivative d/dt|s is defined
in a frame moving at the fluid velocity us. Taking the vec-
tor product with B from the left, we have to leading order
in δ

u⊥ 	 E × B
B2

+
b × ∇ps

msnsΩs
, (6)

consisting of the E×B drift and the diamagnetic drift. Here
b ≡ B/B. The electric field is given by E = −∇Φ− ∂A/∂t,
but we now consider only the electrostatic term because to
this order the electromagnetic term is negligible. With the
aid of the relationship

B × ∇ψ
B2

=
I
B

b − Rφ̂, (7)

Equation (6) is rewritten as

us⊥ = ωs

(
Rφ̂ − I

B
b
)
, (8)

ωs ≡ −∂Φ
∂ψ
− 1

esns

∂ps

∂ψ
. (9)

Here, φ̂ = R∇φ is the unit vector in the toroidal direction.
We call us⊥ a first-order diamagnetic velocity, in accor-
dance with Ref. [10].

3.2.2 TASK/TX

In the TASK/TX system under the assumption of a con-
centric circular equilibrium, the radial direction is orthog-
onal to the poloidal direction unlike the straight field-line
coordinates. The poloidal direction is geometrically deter-
mined, and the magnetic field is expressed as

B = Bθθ̂ + Bφφ̂,

where θ̂ is the unit vector in the poloidal direction. From
the definition of perpendicular direction, the fluid velocity
perpendicular to B is written as

us⊥ = b × (u × b)

= usrr̂ +
Bφ
B2

(Bφusθ − Bθusφ)θ̂

− Bθ
B2

(Bφusθ − Bθusφ)φ̂, (10)

where r̂ is the unit vector in the radial direction. The ve-
locity usr crossing a flux surface is one order smaller than
usθ and usφ and, thus, negligible when we consider the flow
to leading order in δ.

Based on the transport ordering, the inertia and cen-
trifugal terms in Eq. (2) are negligibly small and then we
obtain

Bφusθ − Bθusφ 	 1
esns

∂ps

∂r
+
∂Φ

∂r
. (11)

Substituting this force balance relation into Eq. (10) yields

us⊥	 (Bφusθ − Bθusφ)
Bφθ̂ − Bθφ̂

B2

=
1

RBθ

(
− 1

esns

∂ps

∂r
− ∂Φ
∂r

)⎛⎜⎜⎜⎜⎝−RBθBφ
B2

θ̂ +
RB2

θ

B2
φ̂

⎞⎟⎟⎟⎟⎠
=ωs

(
Rφ̂ − I

B
b
)
,

which is identical to Eq. (8), implying that the TASK/TX
equation system incorporates the flow perpendicular to B.
We have used ∂/∂ψ ≡ (1/RBθ)∂/∂r in the final step of this
derivation.

3.3 First-order flow parallel to B
3.3.1 Theory

To leading order in δ, the particle flow is incompressible
on a flux surface, while its parallel and perpendicular com-
ponents are not individually divergence-free due to the in-
homogeneity of the strength of the magnetic field along a
field line. This characteristic yields a parallel return flow
expressed as (see e.g. Sec. 8.5 in Ref. [12])

nsus‖ = ns
Iωs

B
b + KsB, (12)

where Ks is an integral constant and a flux function as well.
Taking the scalar product of Eq. (12) with ∇θ, we find Ks:

Ks(ψ) ≡ nsûsθ = ns
us · ∇θ
B · ∇θ . (13)

In fact, Ks/ns is identical to the contravariant component
of the flow, ûsθ. We note that ûsθ does not have a velocity
dimension and is also a flux function.

Finally, combining Eq. (8) with Eq. (12), we obtain the
first-order particle flow expressed as

us = ωsRφ̂ + ûsθB. (14)
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When we take the scalar product of us = us⊥ + us‖
with Bp = ∇φ × ∇ψ, we see the relationship:

us‖
B · Bp

B2
p
= −B

us⊥ · Bp

B2
p
+ B

us · Bp

B2
p

. (15)

Obviously, the factor of us‖ on the left-hand side (LHS) of
the equation is unity and that of B in the second term on the
RHS is equivalent to ûsθ, as seen in Eq. (13). Comparing
Eq. (15) to Eq. (12), we have

us‖ = V1s + ûsθB, (16)

V1s ≡ −B
us⊥ · Bp

B2
p
=

Iωs

B
. (17)

In this sense, V1s is the flow along the magnetic field which
would cancel the poloidal component of the diamagnetic
velocity, us⊥.

A similar case holds for the first-order heat flux paral-
lel to the magnetic field qs‖, expressed as

qs‖ =
5
2

psV2s + q̂sθB, (18)

V2s = − I
msΩs

∂Ts

∂ψ
. (19)

q̂sθ is defined in the same fashion as in Eq. (13).

3.3.2 TASK/TX

The velocity parallel to the magnetic field is obtained by

us‖ = (b · u)b =
Bθusθ + Bφusφ

B
b.

With the help of the radial force balance relation in
Eq. (11), this expression can be deformed in the following:

us‖=
1
B

⎡⎢⎢⎢⎢⎢⎣Bφ
Bθ

(Bθusφ − Bφusθ) + Bθusθ +
B2
φ

Bθ
usθ

⎤⎥⎥⎥⎥⎥⎦
	 1

B

[
−RBφ

(
1

esns

∂ps

∂ψ
+
∂Φ

∂ψ

)
+

usθ

Bθ
B2

]

=
1
B

(
Iωs +

usθ

Bθ
B2

)
, (20)

where we have used the definition ofωs, as given in Eq. (9).
Recalling Ks = nsûsθ = nsusθ/Bθ in a circular concentric
equilibrium, we finally have

nsus‖ = ns
Iωs

B
b + nsûsθB,

which is absolutely equivalent to Eq. (12).

4. Neoclassical Transport Modelling
Based on the Moment Approach
In order to explain our neoclassical modeling, we

briefly recall the moment approach [9] and then demon-
strate a mechanism to realize neoclassical effects in the
TASK/TX system.

4.1 Neoclassical viscosity tensor
As seen in the derivation of the preceding section, the

perpendicular flow in Eq. (8) can be determined uniquely
in terms of the thermodynamic forces, while the parallel
flow in Eq. (12) cannot because the poloidal flow ûsθ is un-
known, which is generally a function of the collision fre-
quency. This is also the case for heat flux. In estimating the
poloidal flows, we should take into account the neoclassi-
cal viscosity term dependent on the collisionality regimes,
a term which regulates the behavior of poloidal flows.

Based on the moment approach, using us‖ and qs‖ as
given in Eqs. (16) and (18), bearing in mind that there
is no first-order parallel viscosity force arising from the
ψ derivatives of the flows [10], yields the flux surface-
averaged viscosity stress as follows:

−
〈
B · ∇ · ↔π s

〉
= −3

〈
(∇‖B)2

〉 (
μs1ûsθ + μs2

2q̂sθ

5ps

)
, (21)

−
〈
B · ∇ · ↔θ s

〉
= −3

〈
(∇‖B)2

〉 (
μs2ûsθ + μs3

2q̂sθ

5ps

)
, (22)

where the constant 3
〈
(∇‖B)2

〉
has been chosen so that μs1

reduces to Braginskii’s classical viscosity coefficient [15]

in the collisional limit. Here,
↔
θ s denotes the heat flux

tensor analogous to
↔
π s. The unknown coefficients μs j

( j = 1, 2, 3) are called neoclassical parallel viscosity co-
efficients and are expressed as integrals of the velocity de-
pendent viscosities over the velocity space [16]. We adopt
in a practical manner the expressions of Eq. (B1) in Ref. [7]
and Eq. (20) in Ref. [16] as the viscosities in the banana
and Pfirsch-Schlüter regimes, respectively. The chief ad-
vantage of this approach is that there is no need to numer-
ically solve any complicated kinetic equations to estimate
the neoclassical viscosities.

4.2 Moment equation of neoclassical fluxes
Taking the scalar product of Eq. (5) with B yields to

first order in δ

−
〈
B · ∇ · ↔π s

〉
= −

〈
B(Rs‖ + esnsE

(A)
‖ )

〉
, (23)

and similarly for the heat flux we have

−
〈
B · ∇ · ↔θ s

〉
= − 〈

BHs‖
〉
. (24)

Here E(A)
‖ is the inductive element in the parallel electric

field and Hs‖ is a parallel heat friction. These equations
constitute the balance equations for momentum and heat.
The kinetic treatment of the friction forces Rs‖ and Hs‖ stip-
ulates the relationship between the friction forces and the
parallel flows. Therefore, Rs‖ and Hs‖ are expressed by the
classical friction coefficients lss′

i j [9] and the parallel flows,
and they are valid in all neoclassical regimes.

Substituting the neoclassical viscosity tensors given in
Eqs. (21) and (22) and the expressions of the parallel fric-
tion forces and the parallel flows given in Eqs. (16) and
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(18) into the balance equations given in Eqs. (23) and (24)
yields the simultaneous equations in terms of the poloidal
flows, expressed as

3
〈
(∇‖B)2

〉 (
μs1 μs2

μs2 μs3

) ⎛⎜⎜⎜⎜⎝ ûsθ
2q̂sθ

5ps

⎞⎟⎟⎟⎟⎠

=
∑

s′

(
lss′
11 −lss′

12
−lss′

12 lss′
22

) ⎛⎜⎜⎜⎜⎜⎝V1sB + ûs′θ
〈
B2

〉
V2sB + 2q̂s′θ

5ps′

〈
B2

〉
⎞⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎝esns

〈
E(A)
‖ B

〉
0

⎞⎟⎟⎟⎟⎠ . (25)

Once the inductive parallel electric field E(A)
‖ is known,

solving the simultaneous equations yields the poloidal
flows and subsequently the particle and heat flows in the
parallel direction. Roughly speaking, Eq. (25) includes the
equations that are practically solved in NCLASS.

4.3 Qualitative interpretation of neoclassical
flows

It is meaningful to focus on the relationship between
neoclassical viscosities and flows by considering the limit
to a large aspect ratio, ε � 1. In this limit, the viscosities
μs j are generally much smaller than the friction forces lss′

i j ,
and subsequently the ratio of the former to the latter can be
used as a small expansion parameter [9,10]. Neglecting the
E(A)
‖ contribution, to lowest (zeroth) order in the ratio, we

have
〈
BRs‖

〉
= 0 and

〈
BHs‖

〉
= 0. Momentum conservation

in Coulomb collisions guarantees that the friction forces
depend solely on relative parallel particle flows. There-
fore, the solutions to Eqs. (16), (18) and (25) must have the
form:

〈
us‖B

〉 	 〈VB〉 and
〈
qs‖B

〉 	 0. The former result in-
dicates that all species have a common flow equal to 〈VB〉
to lowest order in the ratio.

Based on
〈
BRs‖

〉
= 0 and quasi-neutrality, sum-

ming Eq. (23) over all species including electrons yields∑
s

〈
B · ∇ · ↔π s

〉
= 0. Substituting the parallel flows given

in Eqs. (16) and (18) and the neoclassical viscosity term
given in Eq. (21) into this equation, we have after averag-
ing it over the flux surface and summing it over all species

〈VB〉 =
∑

s(μs1 〈V1sB〉 + μs2 〈V2sB〉)∑
s μs1

.

Because electron neoclassical viscosity is in general
smaller by a factor of (me/mi)1/2 than ion viscosity, the
common flow V is almost exclusively governed by ion mo-
tion.

For instance, considering a pure plasma consisting
only of electrons and ions without impurities, the ion
poloidal flow is expressed as

ûiθ =
1〈
B2

〉 (〈VB〉 − 〈V1sB〉) = 1〈
B2

〉 μi2

μi1
〈V2iB〉

= −μi2

μi1

I
Zie

〈
B2

〉 ∂Ti

∂ψ
, (26)

applying Eq. (19). This form provides an important result:
poloidal flow is proportional to the temperature gradient

via the neoclassical viscosities. Usually there is a finite
and negative temperature gradient in a plasma, such that
the poloidal flow is always driven by the temperature gra-
dient, owing to the heat flux contribution, μi2. If the contri-
bution from the heat flux to the momentum were ignored,
i.e., μi2 = 0, the poloidal flow would never be neoclassi-
cally driven and would just be damped due to the neoclas-
sical viscosity μi1 at some point, as clearly seen in Eq. (21).
Physically, the damping of the poloidal flow in connection
with the first term in parentheses in Eq. (21) is due to col-
lisions between trapped particles and passing particles.

4.4 Implementation of the neoclassical vis-
cosity term in TASK/TX

In a perfect axisymmetric tokamak, there are no
neoclassical viscosities working in the toroidal direction,
based on standard neoclassical theory. Roughly speaking,
toroidal flow may be balanced by an external torque input
and transport of momentum, free from neoclassical trans-
port: this fact will be discussed in detail in another paper.
In fact, we found that the neoclassical moment approach
builds on the equation of motion in a direction parallel to
B, as seen in the preceding sections, and the equation of
motion in the toroidal direction has nothing to do with the
moment approach.

A parallel equation of motion is developed in the
TASK/TX system by summing the poloidal equation of
motion given in Eq. (3), multiplied by Bθ and the toroidal
equation of motion given in Eq. (4), multiplied by Bφ. Con-
sidering the above statements, we find that we should in-
clude the neoclassical viscosity tensor only in the poloidal
equation of motion as follows:

FNC
sθ ≡−

1
Bθ

〈
B · ∇ · ↔π s

〉

=−
〈
B2

〉
Bθ

3
〈
(∇‖B)2

〉
〈
B2

〉
(
μs1

usθ

Bθ
+ μs2

2q̂sθ

5ps

)
, (27)

where we have used ûsθ = usθ/Bθ as valid in the TASK/TX
system. In a practical sense, TASK/TX uses the NCLASS
module [7] to calculate the neoclassical viscosities, given
as 3

〈
(∇‖B)2

〉
μs j/

〈
B2

〉
, where j = 1, 2, and the poloidal

heat fluxes, given as 2q̂sθ/5ps. TASK/TX solves the mo-
mentum equations for the particles given in Eqs. (2), (3)
and (4) but never solves the momentum equations for heat.
In this sense, usθ, appearing in the first term in the paren-
theses of Eq. (27), can be calculated as one of the depen-
dent variables by solving the set of equations in TASK/TX,
while q̂sθ in the second term, stemming from the momen-
tum equations for heat, cannot be determined solely within
the current framework of TASK/TX. Therefore, at present,
the poloidal heat flux q̂sθ is estimated by NCLASS: we
would like to emphasize that this is essentially the only
variable for which NCLASS is used for subsequent calcu-
lations in TASK/TX. We finally note that we may regard
our model as proposed here to be a combination of the ba-
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Fig. 1 Background radial profiles of (a) the electron density and (b) the electron and ion temperatures.

Fig. 2 Comparison of the poloidal flow for (a) electrons and (b) ions. The short broken line in red (NCLASS) is the sum of the long
broken line in blue (NCLASS, thermo) and the chain line in green (NCLASS, E‖).

sis equations of TASK/TX and Eq. (25), because q̂sθ is es-
timated in NCLASS by solving Eq. (25), in practice.

4.5 Comparison of the poloidal flow
As expected from the discussion in Sec. 4.2, NCLASS

implemented in TASK/TX also provides ûsθ = usθ/Bθ, as
well as q̂sθ. Accordingly, we can directly compare the
poloidal flow usθ as a dependent variable in TASK/TX to
ûsθ as calculated directly in NCLASS. In other words, we
compare the solution of Eq. (3) to that of Eq. (25), in terms
of the poloidal flow.

Plasma parameters comparable to the JT-60U’s are
used: the major radius R = 3.2 m, the minor radius a =
0.8 m, the toroidal field BT0 = 3.2 T, and the plasma cur-
rent Ip = 0.6 MA. The profiles of ne, Te and Ti are shown in
Fig. 1. Temperature profiles are fixed throughout the sim-
ulation. We consider a pure plasma consisting of electrons
and ions only: the effective charge Zeff = 1.0. Focusing
on neoclassically-driven poloidal flow, we set the anoma-
lous particle diffusivity to zero. This choice stems from
the fact that in TASK/TX modeling, an anomalous particle
flux is achieved through a change in the poloidal force due
to turbulence [5].

A comparison of the poloidal flow for electrons and
ions calculated by TASK/TX and NCLASS, respectively,
is shown in Fig. 2 and indicates very good agreement for
both cases. This finding means that the neoclassically-
driven poloidal flow clearly can be reproduced in the
TASK/TX system, following the introduction of Eq. (27).

NCLASS also provides each component of the total
poloidal flow. Figure 2 (a) shows that the electron poloidal
flow is dominated by the contribution from the parallel
electric field E‖, while Fig. 2 (b) shows that the ion poloidal
flow is mainly governed by the thermodynamic forces pro-
portional to the gradients of temperature and pressure,
stemming from the heat flux contribution. In this sense,
the heat flux contribution to the particle flux is essential
for accurately reproducing the neoclassical effects in the
two-fluid modeling.

Even if many terms, such as anomalous perpendic-
ular diffusion, classical collision, collision with neutrals,
and charge exchange loss, are included in Eq. (3), the re-
sultant poloidal flow is identical to the one estimated by
NCLASS. In other words, the neoclassical viscosity tensor
plays a dominant role in determining poloidal flow. In con-
trast, a force model producing a quasilinear particle flux
due to turbulence [5], implemented in TASK/TX, could al-
ter poloidal flow from a purely neoclassical poloidal flow,
if it were activated. It is natural, however, that turbulence
influences neoclassical characteristics as analytically elu-
cidated by Shaing [17].

The neoclassical modeling of TASK/TX given in
Eq. (27) has many advantages. First of all, this modeling
never intervenes in the two-fluid equation system; it sim-
ply requires the neoclassical viscosity term to be added to
the poloidal equation of motion. Secondly, an additional
effect can be readily included in this framework. For ex-
ample, we have a new equilibrium state of the poloidal
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flow that stems from both the neoclassical and additional
effects when we add a torque source other than neoclas-
sical transport. This feature will be useful to investi-
gate the behavior of experimentally observed poloidal flow
that deviates from neoclassical predictions [18]. Thirdly,
this modeling is compatible with self-consistent model-
ing in terms of the evolution of the polarization current.
TASK/TX has been applied to the study of Er and toroidal
rotation driven by an ambipolar radial current created by
NBIs [3, 4]. These studies can be conducted using the fea-
ture of TASK/TX which solves the poloidal equation of
motion with Maxwell’s equations: the evolution of Er is
neoclassically linked to that of the radial (polarization) cur-
rent through that of the poloidal flow. This neoclassical
modeling can reproduce the above important neoclassical
characteristics of a plasma without violating the current
framework of TASK/TX. The relationship between Er and
the radial current will be discussed in detail in another pa-
per.

5. Reproducibility of Neoclassical Re-
sistivity and Bootstrap Current
Two important neoclassical characteristics are neo-

classical resistivity and bootstrap current, the former of
which regulates the penetration time of an ohmic current
and the latter of which is the sole, self-generating (boot-
strap) current in a plasma without an external drive and
is expected to play an indispensable role in a steady-state,
non-inductive plasma. All transport codes for a plasma in
a tokamak must take both effects into account.

Because TASK/TX tracks the current evolution as
electron motion by solving the equations of motion for
electrons, resistivity and bootstrap current do not explic-
itly appear in the set of equations, unlike conventional dif-
fusive transport codes. These effects are naturally embed-
ded in the total current density; hence, the only result ev-
ident in the solution of these equations is the total current
density in the radial, poloidal and toroidal directions, i.e.,
the radial electron flux and the parallel and toroidal cur-
rent densities. We anticipate that these effects would ap-
pear solely by introducing the neoclassical viscosity ten-
sor given in Eq. (27) into the set of equations. Therefore
we should confirm whether the viscosity term produces
neoclassical resistivity and bootstrap current in TASK/TX
through some other means.

In order to validate the TASK/TX results, we extract
the components associated with resistivity and bootstrap
current from analytically-reduced formulae for the set of
basis equations of TASK/TX. In this respect, the com-
parison has been already carried out in Ref. [1]. How-
ever, the neoclassical contribution from the heat flux to
the particle flux was not included at that point; hence, in
some sense the comparison was incomplete. In this sec-
tion, we approximately formulate a steady-state analyti-
cal solution of the equations for electrons, and after ex-

tracting corresponding terms from the steady-state flux, we
compare them with those from NCLASS and the Sauter
model, briefly explained below, in a manner similar to that
in Ref. [1].

5.1 Theoretical models
5.1.1 NCLASS

NCLASS, which calculates the neoclassical viscosities and
the heat flux used in TASK/TX, is also capable of de-
termining neoclassical resistivity and bootstrap current.
Specifically, the former is figured directly by NCLASS;
the latter is derived, as follows, from thermodynamic gra-
dients and the NCLASS-supplied coefficients:

〈
j‖BSB

〉
=

∑
s

(
CBS

T,s

T ′s
Ts
+CBS

p,s
p′s
ps

)
, (28)

where s is the species and the prime denotes the ψ-
derivative.

5.1.2 Sauter model

The CQLP code [19], solving the Fokker-Planck equation
with a full collision operator and including variation along
the magnetic field line, coupled with adjoint function for-
malism, is used to calculate coefficients for resistivity and
bootstrap current in arbitrary equilibrium and collisional-
ity regimes. The results for a wide range of plasma pa-
rameters are applied to model-fitted formulae, termed the
Sauter model [13, 14]. The model distinguishes itself from
NCLASS in terms of its fast calculation speed due to the
algebraic formulae and highly accurate estimates due to a
full-collision operator: the moment approach without the
full-collision operator may cause errors up to 20% [7].

The Sauter model does not include the effects of
potato orbit particles. Also, it cannot estimate anything
neoclassical other than neoclassical resistivity and boot-
strap current, meaning that it alone does not include all
variables regarding neoclassical effects, unlike NCLASS.

5.2 Analytical estimation in TASK/TX
As shown in Sec. 2.3 of Ref. [1], we may reduce the

set of equations to obtain analytical expressions of electron
flows by assuming a steady state and neglecting relatively
small factors and ion flows.

Because neoclassical resistivity η‖ is determined by
the equation j‖ = η−1

‖ E‖, terms proportional to E‖ should be
extracted from electron steady-state fluxes in the poloidal
and toroidal directions. The electron parallel current can
be written as

j‖ = −ene
Bφueφ + Bθueθ

B
. (29)

After analytically estimating the steady-state poloidal and
toroidal fluxes for electrons, we substitute terms propor-
tional to E‖ in the ueθ and ueφ equations into Eq. (29) to
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Fig. 3 Comparison of TASK/TX using Eqs. (31) and (33), NCLASS and the Sauter model for estimates of (a) neoclassical resistivity and
(b) bootstrap current.

obtain

j‖ =
e2ne

meν̄3

1
1 + α

B2

B2
φ

⎛⎜⎜⎜⎜⎝1 + Bθ
B

Fq
eθ|E‖
ene

⎞⎟⎟⎟⎟⎠ E‖, (30)

where ν̄3 is the contribution from the classical collision and
α is the non-dimensional parameter dependent on classical
and neoclassical collisionalities, both of which are defined
in Ref. [1]. The heat flux contribution Fq

eθ|∗ is expressed as

Fq
eθ|∗ =

3
〈
(∇‖B)2

〉
Bθ

μe2
2q̂eθ

5pe

∣∣∣∣∣∗,
where the subscript ∗ denotes the component of the heat
flux associated with a quantity “∗”: E‖, in this case. Sub-
stituting Fq

eθ|E‖ into Eq. (30) and dividing it by E‖ yield

η‖=
meν̂3(1 + α)

e2ne

B2
φ

B2

⎛⎜⎜⎜⎜⎜⎜⎝1+
3
〈
(∇‖B)2

〉
BE‖

μe2

ene

2q̂eθ

5pe

∣∣∣∣∣
E‖

⎞⎟⎟⎟⎟⎟⎟⎠
−1

, (31)

where E‖ in the denominator in parentheses may be offset
by E‖ implicitly appearing in the heat flux contribution q̂eθ,
indicating that η‖ does not explicitly depend on E‖.

In the classical limit, (1 + α)ν̄3 ≈ νei‖B2/B2
φ, and the

heat flux contribution becomes nil. Subsequently, Eq. (31)
is reduced to

ηcl
‖ = νei‖

me

e2ne
≡ N(Zeff)νei

me

e2ne
, (32)

where νei is the electron-ion collision frequency and
N(Zeff) is the correction function of the collision frequency
with respect to the effective charge Zeff , which takes into
account the electron-electron collision effect [9]: In a pure
plasma with Zeff = 1, N(1) ≈ 0.51. We, therefore, find that
Eq. (32) recreates the classical resistivity.

A similar case holds for bootstrap current. Bootstrap
current consists of terms proportional to the pressure and
temperature gradients, p′ and T ′, typically rendered as in
Eq. (28). The p′-driven current originates from the dia-
magnetic drift, and the T ′-driven current originates from
the heat flux. In this sense, we have to include the T ′ con-
tribution calculated by NCLASS in order to estimate boot-
strap current. Substituting terms proportional to p′ and T ′

in the ueθ and ueφ equations into Eq. (29) yields

j‖BS = − 1
(1 + α)ν̄3Bφ

⎛⎜⎜⎜⎜⎝Bθ
B
νNCe

∂p
∂r
− BBθ

Bφ

eFq
eθ|T ′

me

⎞⎟⎟⎟⎟⎠ , (33)

where p is the total pressure. The expression of Fq
eθ|T ′ has

already been defined above. We should emphasize that we
have imposed a rough assumption in this derivation in that
we have ignored the contributions of ion flows. We will
discuss the influence of neglecting the contribution of ions
to bootstrap current in the last part of the next section.

5.3 Comparison of neoclassical resistivity
and bootstrap current

The simulation conditions used are identical to those
given in Sec. 4.5. We compare neoclassical resistivity and
bootstrap current estimated by TASK/TX, NCLASS and
the Sauter model. We use Eq. (31) as the neoclassical re-
sistivity model and Eq. (33) as the bootstrap current model
for TASK/TX. Good agreement on neoclassical resistiv-
ity η‖ is obtained with these three models, as shown in
Fig. 3 (a). Especially, resistivity calculated by NCLASS is
nearly equivalent to that estimated by TASK/TX. Consid-
ering that the neoclassical framework of TASK/TX builds
on the moment approach adopted in NCLASS, the fact that
the results from both are nearly identical demonstrates that
TASK/TX could incorporate the moment approach inter-
nally. The slight difference in η‖ between the Sauter model
and the others may be ascribed to the approach to model-
ing, i.e., a fitted formula based on Fokker-Planck analyses
and the moment approach.

Also, agreement on bootstrap current is obtained, as
shown in Fig. 3 (b). A slight deviation of the TASK/TX es-
timation from the others is observed in the core region, but
the maximum deviation falls within a factor of 1.2. When
we compare the deviation in Fig. 3 (b) to a peak of the uiθ

profile in Fig. 2 (b), we deduce that the deviation of boot-
strap current has to do with the shape of the ion poloidal
flow uiθ. Actually, the location of the maximum deviation
may be linked to that of the maximum magnitude in uiθ.
This finding leads to the deduction that neglecting the con-
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Fig. 4 Comparison of TASK/TX using Eq. (34), NCLASS and
the Sauter model for estimates of bootstrap current. The
figure indicates that the contribution of the ion poloidal
flow to the bootstrap current as included in Eq. (34) is
significant.

tribution of ion flows produces the deviation, a deduction
supported by the fact that the current is the sum of the elec-
tron and ion flows.

In this case, no significant ion toroidal flow exists be-
cause an external torque is not applied to the plasma; only
poloidal flow may exert an impact on bootstrap current.
We extend the approximate expression of bootstrap current
given in Eq. (33) so as to include the contribution from uiθ,
as follows:

j‖BS = − 1
(1 + α)ν̄3Bφ

⎡⎢⎢⎢⎢⎣Bθ
B
νNCe

∂p
∂r
− BBθ

Bφ

eFq
eθ |T ′

me

−
(

BθBφ
B

νNCe − Bνei‖
)

eneuiθ

]
. (34)

We use a self-consistent solution of uiθ calculated
by TASK/TX, when estimating bootstrap current using
Eq. (34). Figure 4 shows a comparison of bootstrap current
among Eq. (34), NCLASS and the Sauter model: Eq. (34)
reproduces quite accurately the bootstrap current estimated
by NCLASS as well as the Sauter model. This finding
means that the deviation in Fig. 3 (b) is in large measure
ascribed to neglecting ion poloidal flow. This result also
supports our contention that the neoclassical properties of
resistivity and bootstrap current can be reproduced accu-
rately in the TASK/TX system.

Finally, we note that Eq. (34) is not quite appropriate
as an approximate formula of bootstrap current because
the poloidal “flow” uiθ is explicitly included to describe
the current “flow”. Ideally, we should have replaced uiθ in
Eq. (34) with terms not directly including the flows. How-
ever, it is quite difficult to analytically reduce the set of
equations of TASK/TX to a set of approximate, linear for-
mulae for all dependent variables. We, therefore, opt for
the second best way to describe bootstrap current as in
Eq. (34) by numerically calculating uiθ.

6. Reproducibility of Neoclassical
Particle Flux
Basically, neoclassical transport in terms of particles

and heat is much smaller than turbulent transport. Cross-
field transport, with a step size typically similar to a ba-
nana width, is on the order of O(δ2), which is also much
smaller than parallel, poloidal and toroidal flows. One of
the important neoclassical transport properties is the Ware
pinch [6], which is directed inward as long as E‖ exists and
may lead to a peaked density profile towards the magnetic
axis.

As is clear in Eqs. (1) and (2), there are no explicit
neoclassical convection and diffusion terms in the equa-
tions associated with particle transport. As such, we
should clearly demonstrate that neoclassical particle trans-
port does occur in the TASK/TX system through the neo-
classical viscosity tensor given in Eq. (27), as is the case
with the other neoclassical properties mentioned above.
In this section, we confirm the existence of neoclassical
particle transport in our neoclassical modeling and then
compare the particle flux with that directly estimated by
NCLASS.

6.1 Radial particle flux
First of all, let us recall how the cross-field radial par-

ticle flux Γsi is derived in neoclassical transport theory. By
derivation, we omit the subscript i meaning charge state,
for the sake of simplicity. Considering the flux surface-
averaged toroidal projection (Rφ̂) of the equation of motion
given in Eq. (5), we have

〈Γs · ∇ψ〉 = − 1
es

〈
R(Rsφ + esnsE

(A)
φ )

〉
,

where we have neglected the inertia and viscosity terms,
which are much smaller than the remaining term, due to the
transport ordering. Using the relationship given in Eq. (7),
the radial particle flux may be decomposed as

〈Γs · ∇ψ〉 = − 1
es

〈 I
B

b · (Rs + esnsE)
〉

+
1
es

〈
B × ∇ψ

B2
· (Rs + esnsE)

〉

≡ − I
es

〈
B2

〉 〈
B(Rs‖ + esnsE

(A)
‖ )

〉

− I
es

〈Rs‖ + esnsE
(A)
‖

B

(
1 − B2〈

B2
〉
)〉

+ Γcl
s +

〈
ns

E(A) × B
B2

· ∇ψ
〉

= − I
es

〈
B2

〉 〈
B · ∇ · ↔π s

〉

− I
es

〈
Rs‖
B

(
1 − B2〈

B2
〉
)〉

− Ins

〈E(A)
‖
B

(
1 − B2〈

B2
〉
)〉
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+ ns

〈
E(A) × B

B2
· ∇ψ

〉
+ Γcl

s , (35)

where we have used Eq. (23) in the final equality and im-
plicitly assumed that ns is the flux function. The first term
in Eq. (35) is the banana-plateau flux, which is driven by
the surface-averaged pressure anisotropies and is dominant
in the long mean free path regime. The E‖ component of
the banana-plateau flux is associated with the Ware pinch.
The second term is the Pfirsch-Schlüter flux that results
from a poloidal variation of the friction force on a magnetic
surface. The combination of the third and fourth terms in-
cluding the electric field describes the motion of the mag-
netic flux surfaces [9]. When we consider the particle flux
on a flux surface, these terms do not appear. The sixth term
is defined as the classical flux.

In NCLASS, the flux for particles with species s
and charge state i can be decomposed into banana-plateau
(BP), Pfirsch-Schlüter (PS) and classical (cl) components:

Γsi ≡ 〈Γsi · ∇ρ〉 = ΓBP
si + Γ

PS
si + Γ

cl
si ,

where ρ denotes the flux surface. This expression is com-
patible with Eq. (35).

6.2 Comparison of neoclassical particle flux
In this comparison, although the amplitude of the clas-

sical flux is two orders smaller than that of the neoclassi-
cal flux, the classical flux is included in this comparison,
though negligible in practice. In a concentric circular equi-
librium which TASK/TX adopts, B2 is identical to

〈
B2

〉
and, thus, the Pfirsch-Schlüter flux vanishes: the PS flux is
of course finite in an actual plasma, but the magnitude is
much smaller than the banana-plateau flux. In the end, we
virtually compare the BP flux.

As clearly seen in Eq. (2), the radial particle flux Γs ≡
nsusr is one of the dependent variables in TASK/TX. In
this sense, we do not need an analytically-reduced equa-
tion to extract the particle flux from the simulation result,
unlike resistivity and the bootstrap current, as shown in

Fig. 5 Estimates from TASK/TX and NCLASS for the neoclas-
sical particle flux.

Sec. 5. The neoclassical particle flux is readily obtained
in TASK/TX directly by solving the set of equations with
turbulent particle diffusivity set to zero. In doing so, we
obtain the flux excluding the turbulence-particle flux in a
simulation result in TASK/TX. A comparison of the sim-
ulation results for the electron particle flux Γe, calculated
by TASK/TX and NCLASS is shown in Fig. 5 in a manner
indicating that the neoclassical particle flux is accurately
reproduced over the profile in the TASK/TX system, as is
the case for other neoclassical properties.

7. Summary and Discussion
We have developed neoclassical transport modeling

compatible with a system of two-fluid equations on which
TASK/TX relies, with the aid of the NCLASS module.
The basic idea was borrowed from the moment approach
used in NCLASS as established mainly by Hirshman [9].
Considering that parallel friction acting on guiding cen-
ters is essential for neoclassical transport, we have simply
introduced the parallel neoclassical viscosity tensor given
in Eq. (27) into the poloidal equation of motion given in
Eq. (3). Even though the neoclassical viscosities and the
poloidal heat flux are estimated by NCLASS, the poloidal
particle flow usθ and any other neoclassical features are
self-consistently calculated solely by solving the equations
in TASK/TX. Through comparisons of many important
neoclassical properties with NCLASS and sometimes the
Sauter model, the validity of the neoclassical modeling was
confirmed.

As is usual with two-fluid equations, the chain of mo-
ment equations is truncated up to the second order mo-
ment, the energy equation, to get a closed set of equa-
tions for TASK/TX. In other words, the moment equa-
tions for heat flux are not solved in the code: instead, these
equations are solved using Eq. (25) to obtain the poloidal
heat flow q̂sθ. If these equations are included in the set
of equations, estimating the heat flux by solving the si-
multaneous equation given in Eq. (25), i.e., NCLASS, is
not necessary, because q̂sθ becomes a dependent variable
of the code. We simply have to calculate the viscosities
μs j ( j = 1, 2, 3) based on their analytic formulae [7, 16] in
terms of neoclassical transport in this case and then solve
the set of equations, including the viscosity tensors given
in Eqs. (21) and (22). In doing so, we enable consistent
estimation of the radial heat flux (transport), similar to the
particle flux shown in Sec. 6. From the standpoint of com-
pleteness of the framework of neoclassical transport the-
ory, the code should be improved so as to solve the moment
equations for heat flux and also to accommodate itself to an
arbitrary equilibrium.
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