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Effect of Magnetic Field Curvature on Penetration of the Magnetic
Field into the Plasma
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The penetration of a magnetic field into a cylindrical plasma, in the time scale that is much longer than
electron cyclotron period, is studied. A linear wave analysis is shown that the magnetic field penetrates rapidly
into the plasma in radii smaller than the ion skin depth. Due to the axial symmetry, the problem reduces to a two-
dimensional problem. The magnetic field evolution is numerically calculated. The ion density is also calculated.
It is shown that during the penetration of the magnetic field, a gap appears between cathode and plasma. At
the early times, at the plasma boundary, electrons move radially, and coupling of the electron velocity and the
electric field induces the magnetic field. Electrons then gain a drift due to the field curvature that results in fast
penetration of the magnetic field into the plasma.

c© 2011 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: magnetic field, nonlinear penetration, fast penetration, skin depth, cylindrical plasma

DOI: 10.1585/pfr.6.1401020

1. Introduction
Magnetic field penetration into plasma is one of the

most important issues studied in plasma physics. It has di-
rect application in laboratory plasmas and in space plasma
[1–4]. When the penetration is due to linear effects, it
usually occurs in the skin depth: in collisional plasma,
skin depth is (ηt/μ0)1/2, where η is the resistivity, while
in collisionless plasma skin depth is c/ωpe, where ωpe =

(ne2/mε0)1/2, n is the plasma density and m is the electron
mass. On the other hand, nonlinear effects result in deeper
penetration of the magnetic field into the plasma, provided
that plasma is inhomogeneous [4–8]. Moreover, the pen-
etration occurs on a time scale much faster than the ion
cyclotron period. In such short time scales, the ion motion
can be neglected relative to the electron motion [4]. For
scale lengths L = (∂ ln n/∂y)−1 that are smaller than the ion
skin depth c/ωpi, the magnetic field penetrates quickly into
the plasma [7]. The velocity of the penetration v, perpen-
dicular to the density gradient, is v = (B/μ0e)(∂Ln(n)/∂n),
where B is the magnetic field amplitude, e is electron
charge (v � vA, vA is the Alfven’s velocity). This fast pen-
etration is induced by density gradient and in this case the
magnetic field is convected with the electron fluid with the
characteristic velocity v. A study of the fast penetration
of the magnetic field into the plasma by taking into ac-
count of electron inertia has been examined by Zaburdaev
in [9]. Moreover, fast penetration of the magnetic field into
an initially homogeneous plasma was studied in [10]; pen-
etration is induced by a density gradient along the current
lines that is formed by the magnetic pressure. The ion dy-
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namics in a two-ion species plasma under penetration of
the magnetic field was investigated in [11]. Furthermore, it
was shown that the behavior of the plasma is different from
that of a single-ion species plasma.

In this paper we calculated the evolution of an az-
imuthal magnetic field into a cylindrical plasma. Due to the
axial symmetry, the problem reduces to a two-dimensional
problem. We suppose that the initial density of the plasma
is uniform so that the magnetic field penetration is due to
the field curvature and not due to the density gradient. A
linear wave analysis is shown that the magnetic field pen-
etrates rapidly into the plasma in radii smaller than the
ion skin depth. Also, the ion density is calculated; dur-
ing the penetration of the magnetic field, a gap appears
between cathode and plasma. We will present a mecha-
nism for the evolution of the magnetic field in the plasma.
At the early times, electrons move radially and the space-
dependent electric field induces the magnetic field. Fast
penetration of the magnetic field into the plasma then has
been attributed to drift of electrons due to field curvature.

The paper is organized as follows: in Sec. 2 the model
is introduced. In Sec. 3 numerical solutions and discussion
are included. Conclusions of the paper are summarized in
Sec. 4.

2. The Model
We study the magnetic field evolution in plasma by

assuming that time scale is much longer than electron cy-
clotron period, so that we can ignore the electron inertia in
the momentum equation
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Fig. 1 A hollow cylindrical plasma fills the gap between two
concentric cylindrical conductors and closes the circuit
for a current which flows in one conductor and return in
the other conductor. The cathode is at the inner conduc-
tor.
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where n,
−→
V i, and Mi are the density, velocity and mass

of ion, respectively;
−→
E and

−→
B are the electric and mag-

netic field, respectively.
−→
J is the current density and T

is the plasma temperature. The Eq. (3) is the generalized
Ohm’s law. We will not use directly it; instead its curl
will be used to provide the induction equation (combin-
ing (3), (5)). Consequently, the term of the pressure gradi-
ent ∇Pe (Pe is the electron pressure) in Eq. (3) is dropped
(∇ × ∇Pe). In Eq. (3) the diffusion term (the term in the
right hand side) is negligible because we consider the fast
magnetic field penetration into the plasma on time scales
shorter than an ion cyclotron period (t < Ω−1

i ). In such
short time scales, the diffusion term can not predict appre-
ciably the magnetic field penetration into the plasma [3,9].
Therefore, the plasma is not tangibly heated and we can
assume that the plasma temperature is constant. However,
a nonzero resistivity is physically necessary to allow the
magnetic field penetration [5, 12]. In next section, that we
will solve Eqs. (1)-(5), the parameter η (Spitzer resistiv-
ity) is 10−4Ω·m [13, 14]. In Eq. (4), i.e., Ampere’s law, we
neglected the displacement current and therefore quasineu-
trality is kept. We will now describe the linear wave anal-
ysis of Eqs. (1)-(5) in cylindrical geometry (Fig. 1): the
magnetic field is uniform in the θ direction, B = Bθ, the
temperature T is constant, the initial plasma density is uni-
form. We assume that all linearized dependent variables
have the wave-like dependency exp i(kzz − ωt). Also we
assume kzR � 1, where R is the magnetic field curvature

radius. By performing some straightforward algebra cal-
culations, the dispersion equation can be found as follows

ω2 − ωkzVR − k2
z (V2

A +C2
s ) = 0, (6)

where VA = B0/(Minμ0)1/2 is the Alfven velocity, VR =

VA(c/ωpiR), and Cs = (2T/Mi)1/2 is ion-acoustic velocity.
In Eq. (6), VR arises from the magnetic field curvature. The
dispersion relation (6) can be written as

ω =
kzVA

2

⎧⎪⎪⎨⎪⎪⎩
c
ωpiR

±
⎡⎢⎢⎢⎢⎢⎣
(

c
ωpiR

)2

+ 4(1 + β)

⎤⎥⎥⎥⎥⎥⎦
1/2⎫⎪⎪⎬⎪⎪⎭ , (7)

where, β is C2
s /V

2
A. If we assume that the pressure is

zero, the Alfven mode is restored in Cartesian geometry
(R → ∞): ω = kzVA. On the other hand, for a cylindrical
geometry with c/ωpiR � 4(1 + β), a mode with dispersion
relation

ω = kz(
c
ωpiR

VA) = kzVR, (8)

appears. Since we have assumed c/ωpiR � 4(1 + β), first,
this mode moves much faster than the Alfven mode. Sec-
ond, the mode is excited when the radius is smaller than
skin depth. Third, it can lead to fast penetration of the
magnetic field into the plasma.

The linear wave analysis above predicts only fast pen-
etration of the magnetic field into the plasma for radii of
smaller than the ion skin depth. In the next section, the
nonlinear terms of Eqs. (1)-(5) are not neglected and we
solve Eqs. (1)-(5), simultaneously.

3. Numerical Solutions and Discus-
sion
The geometry of the problem has been represented in

Fig. 1. A hollow cylindrical plasma fills the gap between
two concentric cylindrical conductors and closes the circuit
for a current which flows in one conductor and return in the
other conductor. According to the legitimate hypothesis of
axisymmetry (∂/∂θ = 0) the magnetic field is restricted to
the azimuthal direction (B = Bθ) since current flows only
in the (r, z) plane [4]. To investigate of the quantity effect of
the curvature of the magnetic field, we solve Eqs. (1)-(5),
simultaneously. As mentioned earlier, the initial density
is uniform. The cylindrical plasma is located at r1 < r <
r2 and 0 < z < L. We now transform Eqs. (1)-(5) to the
dimensionless form. The free parameters of our numerical
method are as follows: the maximum value of the magnetic
field in the calculation region, B0 (B0 is negative so that
the radial current is inward), the initial ion density, n0, the
radius of the inner cylinder, r1, the Alfven’s velocity, VA,
and the time of t0 = L/VA. The dimensionless plasma
parameters are, therefore Vir = Vir/VA, Viz = Viz/VA, r =
r/r1, z = z/L, B = B/B0, t = t/t0, and n = n/n0. Finally,
the dimensionless equations are as follows:

∂n
∂t
= − ∂

r∂r
(nrVir) − ∂

∂z
(nViz), (9)
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. (12)

The boundary and initial conditions for Eqs. (9)-(12) for
the magnetic field, the ion velocity components, and ion
density are:

B(r, z = 0, t) = B0
r1

r
, n(r, z, t = 0) = n0 (13)

Vir(r = r1, z) = Vir(r = r2, z) = 0,

Viz(r, z = 0) = Viz(r, z = L) = 0 (14)

The electrodes are located in r = r1, r2. The ions can
flow to the electrodes but they cannot penetrate into the
electrodes (the electrodes are rigid). So the boundaries
r = r1, r2 are nonpenetrative and the plasma is surrounded
by vacuum at z = 0, L. Moreover the magnetic field,
B = B0r1/r, in z = 0. The electric field parallel to the
conductors is zero

Ez|r=r1,2
=

1
ne
−→
J × −→B

∣∣∣∣∣
z
+ ηJz − −→V i × −→B

∣∣∣∣
z
= 0 (15)

where the Eq. (3) is used.
We solve Eqs. (9)-(12) by numerical scheme described

in [15]. First, we use a uniform rectangular grid in the
(r, z) plane with Δr = Δz = 0.01. Second, we substi-
tute a Crank-Nicolson implicit formulation for the space
and time derivatives. Third, we obtain a system of non-
linear equations linearized by a Taylor series expansion of
the nonlinear terms. Finally the set of linear equations is
solved.

Figure 2(a)-(b) shows the distribution of the magnetic
field at instants, t = 0.01t0, and t = 0.1t0, respectively.
One can see that penetration depth is larger at smaller radii
i.e., the penetration occurs in the plasma near of the inner
cylinder (cathode). As mentioned earlier (section 2), when
c/ωpiR � 1, the magnetic field penetrates rapidly into the
plasma. The dimensionless parameter in the Eq. (12), i.e.,
the coefficient of the third term is as follows

B0

μ0ner1VA
=

Vr1

VA
=

c
ωpiR

(16)

where Vr1 = B0/μ0ner1. Consequently, the condition
c/ωpiR � 1 is the same as VR/VA � 1. As radius R de-
creases, the inequality c/ωpiR � 1, or VR/VA � 1 is more
easily satisfied.

Fig. 2 Mapping of the constant magnetic field contours for
c/ωpir1 = 2 at time t = 0.01t0, (b) the same as (a), but
in t = 0.1t0. The magnetic field is normalized to the max-
imum value of the magnetic field B0. The magnetic field
propagates rapidly along the cathode due to coaxial ge-
ometry. Here, r1is the cathode radius, r2is the anode ra-
dius and (r − r1)/(r2 − r1) shows distance from cathode.

The Eq. (4), Ampere’s law, has the following form:

−→
J = −er

∂(Br)
μ0r∂z

+ ez
∂(Br)
μ0r∂r

, (17)

This equation shows that the current lines coincide with the
contour lines Br = const.

In addition, in a one-dimensional problem, the Hall
term, in Eq. (12), can be written as [4]

∇ ×
⎛⎜⎜⎜⎜⎜⎜⎝
−→
J × −→B

ne

⎞⎟⎟⎟⎟⎟⎟⎠ =
−→
B
μ0ner

∂B
∂z
, (18)

Thus, it is clear that, when radius r is large the magnetic
field penetration is diffusive and the curvature effect is neg-
ligible.

The distribution of the ion density is shown in Fig. 3.
It can be seen that the ion density is reduced near the
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Fig. 3 Mapping of the constant ion density contours at time t =
0.1t0. The plasma density is normalized to initial density.
Here, r1 is the cathode radius, r2 is the anode radius and
(r − r1)/(r2 − r1)shows distance from cathode.

cathode, i.e., a gap appears between the cathode and the
plasma. This is reason that when the magnetic field pene-
trates into the plasma, the force Jz × B pushes radially the
plasma.

The time of the magnetic field propagation through
the plasma is smaller than t0 = L/VA (Fig. 2). Thus, the
propagation speed of the magnetic field or current veloc-
ity J/ne is much larger than the characteristic hydrody-
namic plasma velocity VA. As a result, during the mag-
netic field penetration, distributions of the magnetic field
are governed by the dynamics of electrons. We now dis-
cuss the mechanism that governs the evolution of the mag-
netic field, based on the electrons motion. By combining
Eqs. (3),(5), and continuity equation of electron, and con-
sidering Vi − Ve = J/ne and performing some algebra cal-
culations in cylindrical geometry, we find

∂

∂t
(
Bθ
n

) = −Ver

n
∂Bθ
∂r
. (19)

This relation shows that if the density is uniform and the
electrons move radially from a small radius to a large ra-
dius and the magnetic field grows in time, an increase
in radius results in a decrease in the magnetic field. In
other words, if the plasma fills the gap between two coax-
ial cylindrical conductors when the cathode is at the inner
conductor (electrons move towards larger radius), the mag-
netic field penetrates into the plasma. When, however, the
cathode is at the outer conductor (electrons move towards
smaller radius), the magnetic field does not penetrate into
the plasma [4].

We next suppose that the electrons can move in z di-
rection. We then obtain

∂

∂t

(Bθ
n

)
= −Vez

n
∂Bθ
∂z
. (20)

Fig. 4 Penetration of the magnetic field into the plasma, when
the magnetic field arrives at the plasma boundary. The
electric field in the region near the cathode is larger than
the anode because the magnetic field at the plasma bound-
ary is proportional to r−1.

Penetration of the magnetic field into the plasma along
the zaxis is due to electrons motion along the z direction.
WhenVez � VA, we obtain fast penetration of the magnetic
field into the plasma along the z direction.

At the early times, when the magnetic field arrives
at the plasma boundary that is separated from the vac-
uum by a non-neutral sheath of width c/ωpe, electrons
move radially and the space-dependent electric field in-
duces the magnetic field as shown in Fig. 4. By consid-
ering ω � ωce, the electrons motion perpendicular to the
magnetic field can be described by drift theory. Electrons
therefore obtain the axial velocity Vz due to the magnetic
field curvature

Vz =
mV2

r

erB
. (21)

Consequently, a decrease in radius r results in an increase
in the drift velocity Vz. The magnetic field penetrates into
the plasma as long as r < c/ωpi. This condition can be
satisfied, when the electron velocity is larger than a specific
value.

4. Conclusion
In this paper we studied the mechanism of the mag-

netic field penetration into the plasma, in cylindrical ge-
ometry. The resistivity was negligible, so that the mag-
netic field diffusion is much slower than the magnetic field
penetration. Numerical study showed that the penetration
occurs in the plasma near of cathode and during the pen-
etration of the magnetic field a gap appears between the
cathode and the plasma. The presented mechanism was
based on the electrons motion. At the early times, when
the magnetic field arrives at the plasma boundary, elec-
trons move radially and the space-dependent electric field
induces the magnetic field. Electrons then obtain the axial
velocity Vz due to the magnetic field curvature that can lead
to fast penetration of the magnetic field into the plasma.
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