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Stability Analysis of Relativistic Electron Beams in a Wiggler with
Harmonic Gyro-Resonance Using the Lie Perturbation Method
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The non-canonical Lie perturbation method for analyzing relativistic electron beams in free electron lasers
[Y. Kishimoto et al., Phys. Plasmas 2, 1316 (1995)] is extended to the case with harmonic gyro-resonance due to
the coexistence of a focusing wiggler and an axial guiding field, which allow the maximum beam current to be
increased. By using non-canonical guiding-center variables, we have solved the particle motion not only far from
the harmonic gyro-resonance but also near the resonance. Far from the resonance, the maximum beam current
is found to increase in proportion to (Bg/Bw)2 (Bw and Bg are the strength of the wiggler and guiding fields,
respectively). On the other hand, near the resonance, the beam is found to be confined in a finite radial region and
then transmitted because of higher order secular perturbations.
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Stable propagation of beams with high current and
low emittance is crucial for obtaining high performance in
free electron lasers (FELs). In general, focusing fields are
incorporated to prevent beam particles from diverging. A
self-focusing wiggler [1], in which the surface of the wig-
gler magnet consists of parabolically curved pole faces,
has been introduced and found to be superior because it
leads to stable beam propagation, and maintains the axial
phase relationship between the beam particles and radia-
tion field [2].

To further increase the beam current, Sakamoto et
al. [3] superposed an axial guiding field on the self-
focusing wiggler and demonstrated the advantages of this
configuration. Meanwhile, they also observed a deteriora-
tion of beam propagation due to the resonance between the
wiggler and cyclotron motions. They determined the res-
onance frequency by using a heuristic averaging method;
however, the details of the stability conditions for beam
propagation in the presence of a radial electric field and/or
resonance have not been studied. The difficulty mainly
originates from the complex relativistic particle motion in
such plural magnetic fields.

Kishimoto et al. [4] explored a methodology that uses
a non-canonical Lie perturbation method based on the
phase-space Lagrangian formalism [5] to analyze relativis-
tic electron beams in FELs, and proved that the method is
efficient and powerful for studying the effect of higher or-
der perturbations. Specifically, non-canonical variables are
found to be superior for simplifying perturbation analysis
in the relativistic regime.
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In this study, we have extended the method to the case
with harmonic gyro-resonance. By selecting a coordinate
transformation in terms of non-canonical guiding-center
variables, we performed a stability analysis where higher
order perturbations are properly taken into account.

Here, we start with the non-canonical one-form

γμdzμ =
(
px +

e
c

Ax

)
dx +

(
py +

e
c

Ay
)

dy

+ (pt − eφ) dt − Kdz, (1)

where (px, py) correspond to the mechanical transverse
momentums, and pt = −γmc2 is the beam energy [4]. K
is the new Hamiltonian, given by

K = −
√
α2 − p2

x − p2
y −

e
c

Az, (2)

where α =
√
γ2 − 1mc represents the total momentum.

Note that in Eq. (1), the axial coordinate z is selected as
the independent variable instead of time t. In addition, the
vector potential A is not explicitly included in the root in
Eq. (2), which is an important characteristic in the follow-
ing perturbation analysis.

A focusing wiggler with an axial guiding field is given
by

Bx = Bw sinh (kxx) sinh
(
kyy

)
cos (kwz) ,

By = Bw cosh (kxx) cosh
(
kyy

)
cos (kwz) , (3)

Bz = −
√

2Bw cosh (kxx) sinh
(
kyy

)
sin (kwz) + Bg,

where kx = ky = kw/
√

2. The primary wiggler motion is in
the x-direction and the beam propagates in the z-direction.
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The axial guiding field Bg z is assumed to be spatially uni-
form.

Here, we introduce two smallness parameters that
characterize beam dynamics in a wiggler. One is ε ∼
rb/λw ∼ rb/λg (rb: typical beam radius, λw ≡ 2π/kw:
wiggler pitch, λg ≡ 2π/kg = 2πcα/eBg: effective gyro
radius); the radial deviation of electrons from the design
orbit, i.e.,

√
x2 + y2, is assumed to be of the same or-

der as rb. The other is δ ∼ pw/α, where pw =
√

2K̂mc
(K̂ = eBw/

√
2mc2kw: K-parameter) is the transverse mo-

mentum of electrons due to the wiggler motion. The re-
lationship between the above two smallness parameters is
based on the experimental conditions. Here, we consider
the simple case of δ ∼ ε.

To solve the particle motion in such a configuration
with multiple magnetic fields, we have a choice of coor-
dinate transformations, which depend on whether the har-
monic gyro-resonance condition given by kw ∼ ±nkg is
satisfied. Assuming that the configuration is sufficiently
far from such condition, we perform non-canonical trans-
formation to the lowest-order wiggler-center coordinate

zμ= (z; x, y, t, px, py, pt) �→ Zμ= (z; X,Y, t,U,V, pt) . (4)

Here, (X, Y,U,V) are given by

X = x −Cw
pw

αkw
cos kwz,

Y = y +Cg
pw

αkw
sin kwz,

U = px +Cw pw sin kwz,

V = py +Cg pw cos kwz,

(5)

where Cw = k2
w/(k

2
w − k2

g) and Cg = kwkg/(k2
w − k2

g). These
new coordinates are determined from the lowest order so-
lutions on the vertical plane for which only the primary
wiggler and guiding fields are taken into account. The cor-
responding covariant vector ΓμdZμ is determined from the
relationship ΓμdZμ = γν(∂zμ/∂Zν)dZμ and then simplified
by retaining only the secular perturbations through the Lie
perturbation method. We obtain a new one-form up to the
order of O(ε4), in which each order is given by

Γ(0)
μ dZμ = ptdt + αdz, (6)

Γ(2)
μ dZμ = (U − αkgY)dX + VdY −C2

w
p2

w

4α
dz, (7)

Γ(4)
μ dZμ =

{
−U2 + V2

2α
−Cw

p2
w

8α
k2

w(X2 + Y2)

+
GeIb

c2(kwrb)2
k2

w(X2 + Y2) +C3
w

p4
w

32α3
−C2

g
p2

w

4α

}
dz, (8)

where G = (mc/α)2
[
1 +C2

w(k2
w + k2

g)K̂/2k2
w)
]

and

Γ
(1)
μ dZμ = Γ(3)

μ dZμ = 0. Here, the radial electric field and
pinching force are taken into account by assuming that the
beam distribution is radially uniform with current Ib [4].
The order of the current effect given by the third term on

the right-hand side (RHS) of Eq. (8) depends on the beam
parameters and is not specified so far. Here, the order of
the self-focusing effect is O(ε4), which should balance the
current effect in the limit of maximum beam current, so we
consider the order of the current effect to be also O(ε4).

Then, the equations of motion are derived from
Eqs. (6)-(8) as

dX
dz
=

U
α
, (9)

dY
dz
=

V
α
, (10)

dU
dz
= −

[
Cw

p2
w

4α
− 2GeIb

c2(kwrb)2

]
k2

wX + kgV, (11)

dV
dz
= −

[
Cw

p2
w

4α
− 2GeIb

c2(kwrb)2

]
k2

wY − kgU. (12)

Equations (9)-(12) describe a long-period helical motion in
which the wave number is given by

kh = ±

√√
2k2
β + k2

g ±
√

4k2
βk

2
g + k4

g

2
, (13)

where

kβ =

√
Cw

p2
w

4α2
− 2GeIb

c2(kwrb)2α
kw. (14)

From Eqs. (13) and (14), the maximum beam current,
above which beam propagation is not expected, is esti-
mated as

Ib,max =
c2(kwrb)2 p2

w

8Geα

⎡⎢⎢⎢⎢⎢⎣Cw +
1
2

(
Bg

Bw

)2⎤⎥⎥⎥⎥⎥⎦ . (15)

From Eq. (15), the maximum beam current is found to in-
crease in proportion to (Bg/Bw)2 because of the axial guid-
ing field.

To solve the particle motion near the harmonic reso-
nance between the wiggler and cyclotron motions given by
kw ∼ ±nkg, we need to retain not only the secular terms
but also the resonance ones, which correspond to long-
period perturbations. The guiding-center coordinate is ap-
propriate to distinguish such terms, so we change the non-
canonical transformation to

zμ= (z; x, y, t, px, py, pt) �→ Zμ= (z; X,Y, t, μ, θ, pt). (16)

Here, (X,Y) and (μ, θ) represent the guiding-center vari-
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ables for gyro motion, which are given by

X = x −Cw
pw

αkw
cos kwz −

√
2μ
αkg

cos(kgz + θ),

Y = y +Cg
pw

αkw
sin kwz +

√
2μ
αkg

sin(kgz + θ),

μ =
(px +Cw pw sin kwz)2 + (py +Cg pw cos kwz)2

2αkg
,

θ = tan−1

(
px +Cw pw sin kwz
py +Cg pw cos kwz

)
− kgz. (17)

Note that θ represents the phase shift of gyration motion,
which is slowly changed by higher order perturbations.
Performing similar calculations as those for Eqs. (6)-(8),
we obtain a simplified new one-form, also up to O(ε4)

Γ(0)
μ dZμ = ptdt + αdz, (18)

Γ(1)
μ dZμ = −αkgYdX, (19)

Γ(2)
μ dZμ = μdθ −

[
kgμ + (C2

w +C2
g)

p2
w

4α

]
dz, (20)

Γ(4)
μ dZμ=−

{
p4

w

64α3
(3C4

w − 2C3
w +C2

wC2
g + 10CwC2

g

+3C4
g) +

k2
gμ

2

2α
+Cw

p2
w

8α
k2

w(X2 + Y2) +
pwk2

wμ

4αkg

·
{
cos

[
(kw+2kg)z + 2θ

]
+ sin

[
(kw+ 2kg)z+2θ

]}}
dz, (21)

where Γ(3)
μ dZμ = 0. Here, we consider only the case of

the second harmonic gyro-resonance given by kw ∼ −2kg.
Note that the fourth term on the RHS of Eq. (21) corre-
sponds to the long-period perturbation. The radial elec-
tric field is neglected for simplicity in the following cal-
culation. Then, the new one-form given by Eqs. (18)-(21)
yields the equations of motion as

dX
dz
= −Cw

p2
w

4α2

k2
w

kg
Y, (22)

dY
dz
= Cw

p2
w

4α2

k2
w

kg
X, (23)

dθ̂
dz
= kw + 2kg +

2k2
gμ

α
+

pw√
2α

k2
w

kg
cos θ̂, (24)

dμ
dz
=

pw√
2α

k2
wμ

kg
sin θ̂, (25)

where θ̂ = (kw + 2kg)z + 2θ. Equations (22) and (23) de-
scribe helical motion with a constant radius. Meanwhile,
Eqs. (24) and (25) lead to the relationship

dμ

dθ̂
=

pw√
2α

k2
wμ

kg
sin θ̂

kw + 2kg +
2k2

gμ

α
+

pw√
2α

k2
w

kg
cos θ̂

. (26)

Here, the fourth term in the denominator and also the nu-
merator of Eq. (26) originate from the long-period pertur-
bation, whereas the third term in the denominator arises
from the secular perturbation. Note that these three terms
are derived from Γ(4)

μ dZμ, which is neglected in the heuris-
tic averaging method. However, the resonance condi-
tions are qualitatively changed by such higher order terms.
Eq. (26) can be solved as

μ =
α

2k2
g

⎧⎪⎪⎪⎨⎪⎪⎪⎩ f (θ̂) ±
√√

C +

⎡⎢⎢⎢⎢⎣ α
2k2

g
f (θ̂)

⎤⎥⎥⎥⎥⎦2
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (27)

where f (θ̂) = (−kw − 2kg − pwk2
w cos θ̂)/(

√
2αkg) and C is

a constant. On the other hand, when the third term in the
denominator of Eq. (26) is neglected, which corresponds to
the case with small transverse momentum, Eq. (26) yields
an approximate solution

μ =
C

kw + 2kg +
pw√
2α

k2
w

kg
cos θ̂

. (28)

From Eq. (28), the unstable condition is estimated as

∣∣∣kw + 2kg

∣∣∣ < pw√
2α

kw

kg
kw, (29)

which gives us a criterion for resonance. Since δ ∼
pw/α is sufficiently small, the width of the unstable re-
gion near the second harmonic gyro-resonance given by
(
√

2pw/α)(kw/kg)kw is sufficiently narrower than the dis-
tance between the two adjacent resonances. As a result,
the resonances do not overlap in the present case, and the
electron motion becomes regular or weakly stochastic.

In conclusion, we performed a systematic stability
analysis in a wiggler with harmonic gyro-resonance using
the non-canonical Lie perturbation method. Far from the
resonance, the maximum beam current is found to increase
with (Bg/Bw)2, whereas, near the resonance, the beam is
still confined in a finite radial region because of higher or-
der secular perturbations. The methodology of the present
stability analysis can be applied to other resonance prob-
lems such as cyclotron resonance heating in fusion plas-
mas.
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