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Numerical Simulation of Contactless Methods for Measuring jC
Distribution of High Temperature Superconducting Thin Film
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The inductive method and the permanent magnet method for measuring the critical current density in a high-
temperature superconducting (HTS) thin film have been investigated numerically. For this purpose, a numerical
code has been developed for analyzing the time evolution of the shielding current density in a HTS sample. The
results of computations show that, in the inductive method, the critical current density near the film edge cannot
be accurately evaluated. On the other hand, it is found that, in the permanent magnet method, even if the magnet
is placed near the film edge, the maximum repulsive force is roughly proportional to the critical current density.
This means that the critical current density near the film edge can be estimated from the resulting proportionality
constants.
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1. Introduction
High-temperature superconductors (HTSs) can be

used in standard applications such as power-transmission
cables, flywheel systems and fusion reactor systems. As is
well known, HTS materials have various characteristics to
keep the superconducting state. In particular, since the crit-
ical current density jC is one of most important parameters
characterizing a superconducting property, it is necessary
to accurately measure jC.

The standard four probe method is generally used to
measure the critical current density jC. In the method, a
HTS sample is coated by gold or silver, and subsequently,
it should be heat-treated. This process may lead to not only
the destruction of the HTS but also the degradation of the
HTS characteristics. Therefore, a contactless method has
been so far desired for measuring jC.

Claassen et al. proposed a contactless method for
measuring the critical current density jC [1]. By apply-
ing an ac current I(t) = I0 sin 2π f t to a small coil placed
just above a HTS thin film, they monitored a harmonic
voltage induced in the coil. From the experimental re-
sults, they found that, only when a coil current I0 exceeds
a threshold current IT, the third-harmonic voltage V3 de-
velops suddenly. Moreover, it was also revealed that jC
can be evaluated from IT. This method is called the in-
ductive method and is widely used for the determination of
jC-distributions. On the other hand, Mawatari et al. eluci-
dated the inductive method on the basis of the critical state
model [2]. As a result, they derived a theoretical formula
for the relation between jC and IT.
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In contrast, Ohshima et al. proposed a novel con-
tactless method [3, 4]. While moving a permanent magnet
placed above a HTS film, they measure an electromagnetic
force acting on the film. As a result, they found that the
maximum repulsive force FM is almost proportional to the
critical current density jC. This means that jC can be esti-
mated by measuring FM. This method is called the perma-
nent magnet method and is recently used for the measure-
ment of the jC-distribution [5].

In order to simulate two types of contactless meth-
ods, a numerical code has been developed by analyzing
the time evolution of a shielding current density in a HTS
thin film [6]. By using the code, we have succeeded in
reproducing the contactless methods. However, since we
adopt the cylindrical coordinate in the code [6], the center
of the coil and magnet is located at just above the origin.
Therefore, it is impossible to evaluate a spatial distribution
of jC in a HTS sample by use of the code.

The purpose of the present study is to develop a nu-
merical code for analyzing the time evolution of the shield-
ing current density in a HTS thin film for the case with
the non-axisymmetric model. In addition, we simulate the
inductive method and the permanent magnet method by
using the code, and investigate the influence of the coil
and the magnet position on the determination of the jC-
distribution.

2. Governing Equations
In measuring a critical current density jC by means

of the contactless methods, a time-dependent magnetic
field is applied to a HTS sample. Throughout the present
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Fig. 1 A schematic view of contactless methods for measuring
the critical current density jC.

study, we assume that a magnetic field B/μ0 is applied to a
square-shaped HTS thin film of the length a and the thick-
ness 2ε (see Fig. 1). Furthermore, we adopt the Cartesian
coordinate system 〈O : ex, ey, ez〉, where z-axis is the thick-
ness direction. Note that, in the inductive method, the ori-
gin O is chosen at the center of a HTS upper surface. In
the permanent magnet method, O is taken at the centroid
of a HTS.

As usual, we assume that the thin-layer approxima-
tion: since the thickness of the HTS is sufficiency thin,
a shielding current density can hardly flow in the thick-
ness direction. Hereafter, a HTS film cross-section passing
through z = const. and its boundary are denoted by Ω and
∂Ω, respectively.

Under the above assumptions, a shielding current den-
sity in a HTS is written as

j =
1
ε
∇S × ez, (1)

and the behavior of the scalar function S (x, t) is governed
by the following integro-differential equations [7]:

μ0
∂

∂t

[∫
Ω

d2x′Q
(∣∣∣x − x′

∣∣∣) S (x′, t) + 1
ε

S
]

+
∂

∂t
〈B · ez〉 + (∇ × E) · ez = 0. (2)

Here, x is defined by x ≡ xex + yey, and 〈 〉 is an average
operator over the thickness of the HTS. The explicit form
of Q(γ) [7] is

Q(γ) = − 1
4πε2

⎛⎜⎜⎜⎜⎜⎝1γ −
1√
γ2 + 4ε2

⎞⎟⎟⎟⎟⎟⎠ . (3)

As is well known, the shielding current density j is
closely related to the electric field E. The relation is ex-
pressed by the J-E constitute equation:

E = E(| j|) j/| j|. (4)

As a function E( j), we employ the power law [8]:

E( j) = EC( j/ jC)16, (5)

Fig. 2 A schematic view of an inductive method.

where EC is a critical electric field. In the following, we
assume that a HTS film has a uniform jC-distribution.

For applying the initial and boundary conditions to
(2), we assume S = 0 at t = 0 and S = 0 on ∂Ω. By solv-
ing the initial-boundary problem of (2), we can obtain the
time evolution of a shielding current density. A numerical
code has been developed for solving the initial-boundary
problem of (2). In order to simulate two types of contact-
less methods, the code can be executed by specifying an
assumed critical current density jC and a magnetic field B
generated by a coil or a permanent magnet.

3. Simulation of Inductive Method
By performing the theoretical calculation based on the

critical state model, Mawatari et al. have derived the fol-
lowing formula [2]

jNC = F(rmax)IT/ε, (6)

where jNC is an estimated value of the critical current den-
sity jC. F(rmax) is the maximum of a primary coil-factor
function F(r) [2] which can be determined from the config-
uration of the coil and the HTS. Furthermore, IT is a lower
limit of a coil current I0 above which the third-harmonic
voltage V3 begins to develop. For estimating IT, we use the
conventional voltage criterion: V3 = 0.1 mV⇔ I0 = IT [2]
in the present study.

In the inductive method, the time-dependence mag-
netic filed B/μ0 is generated by applying an ac current
I(t) = I0 sin 2π f t to an Nc-turn coil placed just above a
HTS thin film. For determining the coil position, the xy
coordinates of the center of coil is given by (x, y) = (xc, yc)
(see Fig. 2). Furthermore, the cross-section of the coil is
expressed as D = {(z, r) : |z − Zc| ≤ H/2, |r − Rc| ≤ W/2}
with the cylindrical coordinate (r, θ, z). Here, H and W
are height and width of the cross-section, respectively, and
its center is (z, r) = (Zc, Rc). Throughout the present
section, the parameters are fixed as follows: a = 20 mm,
2ε = 600 nm, xc = 0 mm, W = 1.5 mm, H = 1 mm, Rc =

1.75 mm, Zc = 0.7 mm, Nc = 400, f = 1 kHz, EC =

1 mV/m. For the above configuration, we obtain F(rmax) =
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Fig. 3 Dependence of the third-harmonic voltage V3 on the coil
current I0 for the case with jC = 1 MA/cm2.

6.23 × 104 m−1.
Under the above conditions, let us investigate the in-

fluence of the coil position on the determination of the jC-
distribution. To this end, the y-coordinate yc of the center
of the coil is changed from 0 mm to 10 mm.

First, for estimating the threshold current IT, the third-
harmonic voltage V3 is calculated as functions of the coil
current I0 and is plotted in Fig. 3. We see from this figure
that, for yc = 0 mm, V3 begins to develop from a certain
value of I0, and after that, V3 monotonously increases with
I0. By applying the voltage criterion to the I0-V3 curve
for yc = 0 mm, we get IT = 47.6 mA. By substituting the
value of IT to (6), we can obtain jNC = 0.99 MA/cm2. This
value fairly agrees with the assumed critical current density
jC = 1 MA/cm2. On the other hand, it is found that, for
yc = 10 mm, the behavior of V3 greatly differs in yc = 0
mm. According to the voltage criterion, the value of IT is
19.3 mA for yc = 10 mm.

Next, let us investigate the relation between the thresh-
old current IT and the critical current density jC. To this
end, IT is calculated as functions of jC and is depicted in
the inset of Fig. 4. We see from this figure that, for yc = 0
mm, IT is roughly proportional to jC. This tendency quan-
titatively agrees with Mawatari’s theoretical formula (6).
On the other hand, it is found that, for yc = 10 mm, the
proportional relation between IT and jC no longer hold.

Finally, let us numerically investigate a limit of the
measurement of the critical current density jC. In order to
quantitatively evaluate the accuracy of the threshold cur-
rent IT, we define a relative error

εr ≡ ||IA
T − IN

T ||∞/||IA
T ||∞. (7)

Here, IN
T , a estimated value of IT, is obtained from the

voltage criterion, and IA
T , a theoretical value, is expressed

as IA
T = jCε/F(rmax). Furthermore, || f ||∞ is denoted

by || f ||∞ = Max
jC∈J
| f ( jC)|. Here, J is defined by J ≡

Fig. 4 Dependence of the relative error εr on the y-coordinate
yc of the coil. The inset shows that dependence of the
threshold current IT on the critical current density jC.
Here, �: yc = 0 mm, �: yc = 10 mm.

{0.1 MA/cm2 ≤ jC ≤ 10 MA/cm2}. The relative error εr is
calculated as a function of yc and is plotted in Fig. 4. We
see from this figure that, for yc > 7.5 mm, the accuracy of
the inductive method is drastically degraded with yc. An
important point is that, for yc = 7.5 mm, the sum of yc and
the outer radius Rc + W/2 is equal to a/2. From this re-
sult, we conclude that, until the outer radius of the coil is
equal to the film edge, the critical current density can be
accurately evaluated from Mawatari’s theoretical formula.

4. Simulation of Permanent Magnet
Method
In the permanent magnet method, the time-

dependence magnetic field B/μ0 is generated by a
cylindrical permanent magnet placed above a HTS thin
film. Here, the radius and the height of the magnet are rm

and hm, respectively, and the xy coordinates of the center
of the magnet is denoted by (x, y) = (xm, ym). A distance L
between a magnet bottom and a film surface is controlled
as follows:

(i) From L = Lmax to L = Lmin, the magnet is moved
toward the film at the constant speed: v = (Lmax −
Lmin)/τ0. Here, τ0 is a constant.

(ii) From L = Lmin to L = Lmax, the magnet is moved
away from the film at the same speed v.

Furthermore, for determining the strength of the magnet,
we employ a magnetic flux density BF at (x, y, z) = (0, 0, ε)
for the case with L = Lmin. Throughout the present sec-
tion, the parameters are fixed as follows: a = 40 mm, 2ε =
200 nm, xm = 0 mm, rm = 2.5 mm, hm = 3 mm, τ0 = 39 s,
Lmax = 20 mm, Lmin = 0.5 mm, EC = 0.1 mV/m, BF = 0.3 T.

Under the above conditions, we investigate the influ-
ence of the magnet position on the determination of the
jC-distribution. For this purpose, the y-coordinate ym of
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Fig. 5 Dependence of the electromagnetic force Fz on the dis-
tance L for the case with jC = 3.85 MA/cm2.

the center of the magnet is changed from 0 mm to 20 mm.
Let us first investigate an electromagnetic force Fz act-

ing on the film. For the various values of ym, the electro-
magnetic force is calculated as functions of the distance
L and are depicted in Fig. 5. We see from this figure that
a repulsive force gradually increases as the magnet moves
toward the film (0 ≤ t ≤ τ0). On the other hand, an at-
tractive force decreases to zero when the magnet moves
away from the film (τ0 < t ≤ 2τ0). These tendencies do
not change regardless of the magnet position. The elec-
tromagnetic force for L = 0 can be easily determined by
extrapolating the L-Fz curve (see Fig. 5). In the following,
this value is called a maximum repulsive force FM.

Next, we investigate the relation between the maxi-
mum repulsive force FM and the critical current density
jC. Note that the experimental results were obtained for
the case with only ym = 0 mm [3, 4]. For various values
of ym, FM is evaluated as functions of jC and is plotted in
Fig. 6. This figure indicates that, for ym = 0 mm, FM in-
creases in proportion to jC. This result is in qualitatively
agreement with Ohshima’s experimental one. On the other
hand, the results of computations show that, even when the
magnet is located at ym = 19 mm and 20 mm, FM is al-
most proportional to jC. In other words, the relation can
be expressed as jC = K(xm, ym)(FM/2ε), where K is a pro-
portionality constant.

From this result, we conclude that, even if the mag-
net is placed near the film edge, the critical current density
jC can be determined. Therefore, the jC-distribution in the
HTS film can be estimated from the proportionality con-
stants determined by the resulting FM- jC lines.

5. Conclusion
We have developed a numerical code for analyzing the

time evolution of the shielding current density in a HTS
sample for the case with the non-axisymmetric model. By
using the code, simulating the inductive method and the
permanent magnet method, we investigate the influence of

Fig. 6 Dependence of the critical current density jC on the max-
imum repulsive force FM. Here, �: yc = 0 mm, �:
ym = 19 mm, �: ym = 20 mm.

the coil and the magnet position on the determination of the
distribution of the critical current density jC. Conclusions
obtained in the present study are summarized as follows:

(1) In the inductive method, the critical current density jC
near the film edge cannot be accurately measured. In
other words, until the outer radius of the coil is equal
to the film edge, jC can be evaluated from Mawatari’s
theoretical formula.

(2) In the permanent magnet method, even if the magnet
is located near the film edge, the maximum repulsive
force FM is almost proportional to jC. From this re-
sult, jC near the film edge can be estimated from the
proportionality constant determined with the resulting
FM − jC lines.

Therefore, we conclude that the measurement of jC near
the film edge is suitable for the permanent magnet method.
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