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The boundary node method has been reformulated without using any integration cells and its performance
has been investigated by comparing with the dual reciprocal boundary element method (DRM). The results of
computations show that the accuracy of the proposed method is superior to that of the DRM regardless of the
number of a boundary node, a boundary condition and a boundary shape. In addition, when the number of
boundary nodes exceeds a certain limit, the calculation speed of the proposed method becomes almost equal to
that of the DRM.
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1. Introduction
As is well known, the boundary-element method

(BEM) is a powerful method for solving a potential prob-
lem. It has been widely used in the field of the nuclear
fusion science and has yielded excellent results. However,
the BEM has the inherent demerit. Before executing a
BEM code, a boundary must be divided into a set of el-
ements.

In order to resolve the above demerit, Mukherjee et
al. have proposed the boundary-node method (BNM) [1].
Since the BNM is one of the meshless approaches, a prepa-
ration of input data can be extremely simplified. However,
in the conventional BNM, integration cells must be em-
ployed for evaluating the influence coefficients. In other
words, a concept of elements partly remains in the BNM.

In the field of computer graphics, the novel method
has been recently proposed for representing the object sur-
face [2,3]. In the method, the object surface has been repre-
sented in terms of an implicit function. If the above method
were applied to the BNM, the demerit of the BNM could
be completely resolved.

The purpose of the present study is to reformulate the
BNM without using any integration cells and to numeri-
cally investigate the performance of the proposed method.

2. Boundary-Node Method
2.1 Discretization

As a potential problem, we consider a 2D Poisson
problem:
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−Δu = ρ in Ω, (1)

u = ū on ΓD, (2)

q ≡ ∂u/∂n = q̄ on ΓN, (3)

where Ω denotes a region bounded by a simple closed
curve ∂Ω. The boundary ∂Ω consists of two curves, ΓD and
ΓN, which satisfy the following relations: ΓD ∪ ΓN = ∂Ω

and ΓD ∩ ΓN = φ. In addition, ρ, ū and q̄ are known func-
tions in Ω, on ΓD and on ΓN, respectively. Moreover, n
denotes an outward unit normal on ∂Ω.

When (1) is transformed to an equivalent boundary in-
tegral equation, the equation contains not only boundary
integrals but also a domain integral. In order to remain
only boundary integrals, we assume that ρ(x) is approxi-
mated as

ρ(x) =
N+K∑
l=1

αl f
(∣∣∣x − zl

∣∣∣/R), (4)

where z1, z2, · · · , zN are nodes on ∂Ω, whereas zN+1, zN+2,
· · · , zN+K are nodes in Ω. Throughout the present study,
the node on ∂Ω is called the boundary node. Moreover, R
and αl’s are all constants. For the function f (r), we adopt
a compactly supported radial basis function [4].

Under the approximation, the equation obtained by
substituting (4) into (1) is shown to be equivalent to the
following boundary integral equation:∮

∂Ω

∂w∗ (x(s), y)
∂n

[
u (x(s)) − u(y)

]
ds

−
∮
∂Ω

w∗ (x(s), y) q(x(s))ds
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=

N+K∑
l=1

αl

{∮
∂Ω

∂w∗ (x(s), y)
∂n

[
ûl (x(s)) − ûl(y)

]
ds

−
∮
∂Ω

w∗ (x(s), y) q̂l (x(s)) ds
}
. (5)

Here, w∗(x, y) ≡ −(1/2π) log
∣∣∣x − y

∣∣∣. Furthermore, ûl is a
particular solution of −Δûl = f

(|x − zl|/R) and q̂l denotes
its normal derivative. In addition, s indicates an arclength
along ∂Ω.

Let us discretize (5) and its associated boundary con-
ditions. To this end, the shape functions Φi(s)’s are as-
signed to the boundary nodes, zi’s. As a result, u, q, ûl and
q̂l are assumed as

u (x(s)) =
N∑

j=1

Φ j(s) u∗j, (6)

q (x(s)) =
N∑

j=1

Φ j(s) q∗j, (7)

ûl (x(s)) =
N∑

j=1

Φ j(s) û jl, (8)

q̂l (x(s)) =
N∑

j=1

Φ j(s) q̂ jl, (9)

where u∗j, q∗j, û jl and q̂ jl are constants.
Under the above assumptions, (5) and its associated

boundary conditions can be discretized to a linear sys-
tem [5]. Thus, the 2D Poisson problem is reduced to the
problem in which the linear system is solved. By solving
the linear system, we can determine u∗ and q∗ to get the
distributions of u and q on ∂Ω.

2.2 Shape function
As mentioned in 2.1, we must determine shape func-

tions assigned to all boundary nodes. In the BNM, by us-
ing the Moving Least-Square approximation [3], the shape
functions Φ j(s) ( j = 1, 2, · · · ,N) are defined by

Φ j(s) = pT (s) A−1(s) c j(s). (10)

Here, A(s) and c j(s) are given by

A(s) =
N∑

j=1

w
(
d(s, s j)/R j

)
p(s j) p(s j)T , (11)

c j(s) = w
(
d(s, s j)/R j

)
p(s j), (12)

where d(s, s′) and R j denote a distance between x(s) and
x(s′) along ∂Ω and a support radius, respectively, and w(r)
is defined by

w(r) =
{

1 − 6r2 + 8r3 − 3r4; r ≤ 1,
0; r > 1.

(13)

For the m-dimensional vector p(s), we adopt the following
type:

p(s)T =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1; m = 1,[
1, s
]
; m = 2,[

1, s, s2]; m = 3.
(14)

Fig. 1 The behavior of shape functions, Φ3(s) and Φ5(s). Here,
the parameters are fixed as follows: m = 2 and Rj = 2.
The symbol � indicates the boundary node.

As an typical example, we compute shape functions,
Φ3(s) and Φ5(s), from five boundary nodes placed on the
boundary of a unit circle and its behavior is shown in Fig. 1.
We see from this figure that both Φ3(s) and Φ5(s) are a
smooth function with a period of 2π.

3. Extended Boundary-Node Method
In the conventional BNM, the boundary ∂Ω must be

divided into a set of cells to evaluate the following contour
integrals:

gi j =

∮
∂Ω

w∗
(
x(s), x(si)

)
Φ j(s) ds, (15)

hi j =

∮
∂Ω

∂w∗(x(s), x(si))
∂n

[
Φ j(s)−Φ j(si)

]
ds. (16)

In this sense, a concept of elements cannot be completely
removed. In the present study, integrals are directly calcu-
lated by use of the vector equation of ∂Ω. In this section,
we propose the numerical method for determining the vec-
tor equation of ∂Ω.

First, the implicit-function representation g(x) = 0 is
determined for the curve that passes through all boundary
nodes. Next, we numerically solve the following ordinary
differential equation:

dx
ds
= R
(
π

2

)
· ∇g
|∇g| , (17)

where R(θ) denotes a tensor representing a rotation
through an angle θ. Apparently, the analytic solution of
(17) gives the vector equation x = x(s) of the implicit-
function representation g(x) = 0. However, if the Runge-
Kutta method is applied to (17), a large cost is necessary to
obtain a high-precision solution of the vector equation.

In order to resolve the above difficulty, we propose the
novel algorithm in which x(n+1) is calculated from x(n) by
use of the following three steps (see Fig. 2).
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Fig. 2 The schematic view of the algorithm for solving (17).

(i) An approximate solution of x∗ at the (n + 1)th step is
corrected by

x∗ = x(n) + R
(
π

2

)
·
[ ∇g
|∇g|
]

x(n)
δs. (18)

Here, δs is a constant.
(ii) For the purpose of determining an intersection of the

straight line x = x∗ + λ(∇g)x∗ and the curve g(x) = 0,
the nonlinear equation G

(
λ
) ≡ g

(
x∗ + λ(∇g)x∗

)
= 0 is

solved by using the Newton method.
(iii) The numerical solution x(n+1) is determined by

x(n+1) = x∗ + λ
(∇g
)

x∗ .

After P data points, x(1), x(2) , · · · , x(P), are obtained by
using the above algorithm, these points are interpolated by
using the cubic spline. As a result, the vector equation
x = x(s) can be numerically determined. By means of the
vector equation, boundary integrals can be easily evaluated
without any integration cells.

The above technique is incorporated into the BNM.
Throughout the present study, the resulting method is
called the eXtended Boundary-Node Method (X-BNM).

4. Numerical Results
In this section, the performance of the X-BNM

is investigated by comparing with the dual-reciprocical
boundary-element method (DRM). In this study, we ap-
ply both two methods to a simple Poisson problem. ∂Ω is
assumed as

∂Ω =
{
x ∈ R2

∣∣∣∣g(x) ≡
[
x−Δ(y/2)2

]2
+(y/2)2−1 = 0

}
,

(19)

where Δ is the triangularity. Furthermore, ρ, ū and q̄ are
chosen so that the analytic solution of (1)-(3) is given by

u = 3e−(x2+y2) − cosh x sin y + cos x sinh y. (20)

In addition, ΓN is a curve measured from z1 along ∂Ω and
its length denotes sN. ΓD is defined as ΓD = ∂Ω − ΓN.
Throughout the present study, the support radius R j is
given by

R j = γmin
(
d
(
smod( j+1,N), s j

)
, d
(
smod( j−1,N), s j

))
. (21)

Fig. 3 Dependence of the relative error ε on the number N of
the boundary nodes for the case with Δ = 0. Here, the
symbols, � and � indicate the values for the DRM, the
X-BNM (m = 1), respectively. The inset shows the de-
pendence of ε on m for the same case. Here, • : N = 128
and ◦ : N = 256.

Here, γ is a constant. The number K of nodes in Ω, which
satisfies K ∝ N2 is determined. In addition, the parameters
are fixed as follows: R = 1.5, γ = 1.6.

As the measure of the accuracy of the numerical solu-
tion, we adopt the relative error defined by

ε =

√∥∥∥uA − uN
∥∥∥2

2 +
∥∥∥qA − qN

∥∥∥2
2√∥∥∥uA

∥∥∥2
2 +
∥∥∥qA
∥∥∥2

2

, (22)

where subscript notations, A and N, are analytic and nu-
merical solutions, respectively, and

∥∥∥ ∥∥∥
2 denotes an Eu-

clidean norm.
Let us first investigate the accuracy of the X-BNM and

the DRM for the Dirichlet problem. The relative errors are
calculated as a function of N and are depicted in Fig. 3.
We see from this figure that the relative errors are almost
proportional to N−β among all methods and that the power
indices β’s satisfy β ≈ 1.01 and β ≈ 1.94 for the DRM
and the X-BNM, respectively. The above results indicate
that the accuracy of the X-BNM is much higher than that
of the DRM. In the inset of Fig. 3, we see from this fig-
ure that the value of m does not affect the accuracy of the
numerical solution. This result means that the accuracy of
numerical solution does not depend on the selection of m.
This is mainly because the support radius is much shorter
than the arclength along the boundary. From the viewpoint
of a calculation cost, m is fixed as m = 1 in the following
numerical experiment.

We investigate the influence of the boundary shape on
the accuracy of the solution for the Dirichlet problem. The
relative errors are plotted as a function of Δ in Fig. 4. The
accuracies of the DRM and the X-BNM monotonously in-
crease with an increase in Δ. In addition, the accuracy of
the X-BNM is much higher than that of the DRM regard-
less of Δ. From these results, in the X-BNM, we can ob-
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Fig. 4 Dependence of the relative error ε on the triangularity Δ
for the Dirichlet problem. Here, the parameter is fixed as
N = 256. The symbols, � and � indicate the values for
the DRM and the X-BNM, respectively.

Fig. 5 Dependence of the relative error ε on the Neumann ratio
sN/L. Here, the parameters are fixed as Δ = 0 and N =
256. The symbols, � and � indicate the values for the
DRM and the X-BNM, respectively.

tain the high-precision numerical solution even when the
boundary shape is extremely concave.

Next, we investigate the influence of the kind of the
boundary condition on the accuracy of the solution. In
Fig. 5, we show the dependence of the relative error ε on
the Neumann ratio sN/L. Here, L denotes a length of ∂Ω.
This figure indicates that the relative error of the DRM de-
creases with an increase in the Neumann ratio. On the
other hand, the accuracy of X-BNM is almost constant re-
gardless of the Neumann ratio except for sN/L ≈ 1. More-
over, the accuracy of the X-BNM is much higher than that
of the DRM. The above result shows the accuracy of the
X-BNM is superior to that of the DRM regardless of the
boundary condition.

Finally, let us compare the calculation speed of the X-
BNM with that of the DRM. To this end, the ratio τX/τD of
CPU times is calculated as a function of N and is depicted
in Fig. 6. Here, τX and τD denote the CPU times for the X-
BNM and that for the DNM, respectively. We see from this

Fig. 6 Dependence of the ratio τX/τD on the number N of the
boundary nodes for the case with Δ = 0.

figure that τX/τD decreases monotonously with an increase
in N until τX/τD ≈ 1 is satisfied for N � 200. This ten-
dency shows that the speed of the X-BNM is almost equal
to that of the DRM for N � 200.

From the above results, we might conclude that the X-
BNM is a powerful method for solving the potential prob-
lem.

5. Conclusion
By completely removing a concept of elements from

the BNM, we have reformated the X-BNM. In addition,
we have investigated its performance by comparing with
the DRM. Conclusions obtained in the present study are
summarized as follows.

1) For both the Dirichlet and the mixed-type problems,
the accuracy of the X-BNM is much higher than that
of the DRM.

2) Even when the boundary shape is concave, the X-
BNM shows a much higher accuracy than the DRM.

3) When the number of boundary nodes exceeds a cer-
tain limit, the speed of the X-BNM becomes almost
equal to that of the DRM. In this study, the value has
become N ≈ 200.
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