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The magnetohydrodynamic (MHD) simulation code MHD Infrastructure for Plasma Simulation (MIPS) was
benchmarked on ballooning instability in the Large Helical Device (LHD) plasma. The results were compared to
the results of linear analysis by using the CAS3D code. Both the linear growth rates and the spatial profiles were
found to be in good agreement. An extended MHD model with finite ion Larmor radius effects was implemented
into the MIPS code. Ballooning instabilities were investigated using the extended MHD model, and the results
were compared with those using the MHD model. Ion diamagnetic drift was found to reduce the growth rate
of the short-wavelength modes; hence, modes with a diamagnetic drift frequency comparable to the ideal MHD
growth rate are the most unstable. The most unstable toroidal mode number of ballooning instability in the LHD
is reduced to |n| ≤ 5 for hydrogen plasma with ion number density ni ≤ 1019 m−3.
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1. Introduction
Magnetohydrodynamics (MHD) provides a basic

model of the macroscopic behaviors of plasmas. The
MHD model is generally used for theoretical and compu-
tational analyses of fusion plasmas. The MHD simulation
code, MHD Infrastructure for Plasma Simulation (MIPS)
can be applied to toroidal plasmas and used as a basis
for extended-MHD simulations. The MIPS code is paral-
lelized using the Message-Passing-Interface (MPI). In this
paper, we report on the benchmark of the MIPS code for
ballooning instability in the Large Helical Device (LHD).

Recently, we have implemented an extended-MHD
model presented by Hazeltine and Meiss [1] into the MIPS
code. MHD simulation of LHD plasma revealed that the
ballooning modes with high toroidal mode number are un-
stable and lead to significant flattening of the pressure pro-
file [2]. The ballooning modes with higher mode num-
bers are known to be more unstable. It is interesting to
investigate how the ballooning modes are affected by the
ion finite Larmor radius effects, which are retained in the
Hazeltine-Meiss model. We compare the results with the
MHD results.

2. Benchmark of MIPS Code
The MIPS code uses cylindrical coordinates (R, ϕ, z)

and solves the MHD equations described below.

∂ρ

∂t
= −∇ · (ρv) , (1)

ρ
∂

∂t
v = −ρw × v − ρ∇

(
v2

2

)
− ∇p + j × B

+
4
3
∇[νρ(∇ · v)] − ∇ × [νρw] , (2)
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∂B
∂t
= −∇ × E , (3)

∂p
∂t
= −∇ · (pv) − (γ − 1)p∇ · v

+ (γ − 1)
[
νρw2+

4
3
νρ(∇ · v)2+η j · ( j − jeq)

]
,

(4)

E = −v × B + η( j − jeq) , (5)

j =
1
μ0
∇ × B , (6)

w = ∇ × v . (7)

Here, μ0 is the vacuum magnetic permeability, γ is the adi-
abatic constant, and jeq is the equilibrium current density
that is considered to make the MHD equilibrium consis-
tent with the finite resistivity. The spatial derivatives are
calculated by a finite difference method of fourth-order ac-
curacy. The fourth-order Runge-Kutta method is used for
the time integration.

The MIPS code was benchmarked on the balloon-
ing modes in the LHD plasma. The initial equilibrium
was constructed using the HINT code [3] for the inward-
shifted magnetic configuration with Rax = 3.6 m and the
free net toroidal current. The equilibrium was investigated
in Ref. [2]; the spatial profiles of the beta value and rota-
tional transform are shown in Fig. 1. A uniform density
profile is assumed. A Boozer coordinate system of the
equilibrium was constructed for the spectral analysis of
the simulation results. Viscosity and resistivity values of
ν = η/μ0 = 10−6vARaxis are chosen for numerical stability,
where vA and Raxis = 3.78 m are the Alfvén velocity at the
magnetic axis and the major radius of the magnetic axis,
respectively. The numbers of grid points are (128, 640,
128). The computational performance of the MIPS code
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Fig. 1 Spatial profiles of the beta value and rotational transform
of the initial equilibrium.

Fig. 2 Comparison of ballooning mode growth rate calculated
using MIPS (red circles) and CAS3D (blue squares) for
different toroidal mode numbers.

by using 32 cores of the POWER6 processor (5.0 GHz) of
the Plasma Simulator (HITACHI SR16000) is 82 Gflops.
This is 13% of the theoretical peak performance.

The results of the MIPS code were compared with
those of the MHD linear analysis code CAS3D [4]. The
linear growth rates of the ballooning modes in the two re-
sults are compared in Fig. 2. The growth rate is normalized
by the Alfvén frequency ωA = vA/Raxis. We observe good
agreement for low toroidal modes (|n| ≤ 7), whereas for
|n| ≥ 8, the MIPS simulation shows lower growth rates than
the CAS3D analysis. The numbers of poloidal grid points
used in the MIPS code may not be sufficient to resolve the
spatial profiles of the higher-n ballooning modes. The fi-
nite viscosity and resistivity assumed in the simulation is
another factor in the lower growth rate for higher-n modes,
because the viscous and resistive terms are second-order
spatial derivatives. The radial velocity profiles of the bal-
looning mode with n = −4 are compared in Fig. 3. Good
agreement appears between the MIPS simulation and the
CAS3D analysis. Thus, we can conclude that the MIPS
code is a useful tool for simulation studies of MHD insta-
bilities in the LHD.

Fig. 3 Comparison of the radial velocity profiles of the n = −4
ballooning mode in (a) the CAS3D analysis and (b) the
MIPS simulation. Horizontal axis represents the square
root of the normalized toroidal magnetic flux. Poloidal
mode numbers are indicated in the figure.

3. Simulation by Using the Hazeltine-
Meiss Model
The extended-MHD model presented by Hazeltine

and Meiss [1] was implemented in the MIPS code. Ion
finite Larmor radius effects can be investigated using this
model. The electron and ion pressures are assumed to be
equal. The Hazeltine-Meiss model is given by the follow-
ing equations.

∂ρ

∂t
= −∇ · (ρv) , (8)

ρ
∂

∂t
vMHD = −ρv · ∇vMHD + ρvpi · ∇ (

v//b
) − ∇p

+ j × B +
4
3
∇[νρ(∇ · vMHD)]

− ∇ × [νρw] , (9)

∂B
∂t
= −∇ × E , (10)

∂p
∂t
= −∇ · (pvMHD) − (γ − 1)p∇ · vMHD

+ (γ − 1)
[
νρw2+

4
3
νρ(∇ · vMHD)2+ j//E//

]
,

(11)

v// = vMHD · b , (12)

vE = vMHD − v//b , (13)

w = ∇ × vMHD , (14)

vpi =
AmH

2ZeρB2 B × ∇p , (15)
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j =
1
μ0
∇ × B , (16)

v = vMHD + vpi +
AmH

Zeρ
j⊥ , (17)

E⊥ = −vE × B , (18)

E// = −AmH

2eρ
∇//p + η( j// − j//eq) . (19)

Here, mH, A, and Z are the hydrogen mass, ion atomic
number, and ion charge numbers, respectively.

Equations (8)-(19) resemble the MHD equations.
However, ion finite Larmor radius effects are retained in
the Hazeltine-Meiss model. The dispersion relation of the
kinetic Alfvén wave was reproduced by a numerical code
that implements Eqs. (8)-(19) [5]. In this model, the time
derivative in the momentum equation [Eq. (9)] appears for
the MHD velocity and not for the total velocity v given
by Eq. (17). The total velocity contains the perpendicu-
lar current density term in Eq. (17), and the perpendicular
current density can be expressed using the time derivative
of the MHD velocity, as seen in Eq. (9). Thus, the time
derivative of the total velocity contains the second-order
time derivative of the MHD velocity. This would make the
equation system more complicated and difficult to simu-
late. On the other hand, the momentum equation [Eq. (9)]
describes the evolution of the MHD velocity. This makes
the simulation relatively easy to conduct. In this paper, two
differences from the original Hazeltine-Meiss model ap-
pear in the equation system. The pressure evolution equa-
tion [Eq. (11)] differs slightly from that in Ref. [1], because
the MHD velocity vMHD in this paper is simply related to
the E×B velocity and the parallel velocity by Eqs. (12) and
(13), whereas in Ref. [1], the MHD velocity is defined by
vMHD = v − vpi. With the original definition we found that
the equation system is numerically unstable, so we used a
different vMHD in Eq. (11). The MHD velocity also appears
in Eq. (9). However, Eq. (9) is identical to its counterpart
in Ref. [1] if we neglect the viscous terms, which are not
included in the original equation system.

The ballooning mode growth rate and real frequency
in LHD plasma investigated using the MHD and Hazeltine-
Meiss models are shown in Fig. 4. Two different hy-
drogen plasmas were investigated using the Hazeltine-
Meiss model for different ion number densities ni =

1.6× 1019 m−3 and ni = 4× 1018 m−3 with A = 1 and Z = 1.
The Hazeltine-Meiss model shows a reduced growth rate
and finite frequency. The difference from the MHD results
is greater for the lower density case (ni = 4× 1018 m−3)
and higher mode numbers. In this case, the most unsta-
ble mode is n = −3 and the growth rate of the middle- and
higher-n (|n| ≥ 4) modes is significantly reduced. For the
moderate-density case (ni = 1.6× 1019 m−3), the most un-
stable mode is n = −5 and the growth rate of the higher-n
(|n| ≥ 6) modes are more reduced than the lower-n modes.
We can say that the most unstable toroidal mode number
of the ballooning instability in LHD hydrogen plasma is
reduced using the Hazeltine-Meiss model to |n| ≤ 5 for ion

Fig. 4 Growth rate and frequency of ballooning instabilities in
the LHD vs. toroidal mode number. MHD model results
are shown in red: Hazeltine-Meiss model results for hy-
drogen plasma are shown in brown (ni = 1.6 × 1019 m−3)
and green (ni = 4 × 1018 m−3). Dashed curves represent
ω∗i/2.

Fig. 5 Radial velocity profile of the n = −4 ballooning mode in
the LHD simulated using the Hazeltine-Meiss model for
hydrogen plasma with number density ni = 4 × 1018 m−3.
Solid (dashed) curves represent cosine (sine) components
of the harmonics. Horizontal axis represents the square
root of the normalized toroidal magnetic flux.

number density ni ≤ 1019 m−3.
The spatial profile of the ballooning mode with

toroidal mode number n = −4 for ni = 4× 1018 m−3 is
shown in Fig. 5. The m/n = 6/−4 harmonic is greater than
that in the MHD case, as shown in Fig. 3. In Fig. 5, the
sine harmonics appear in addition to the cosine harmon-
ics, whereas the sine harmonics are negligibly small in
Fig. 3. In both figures, we chose the phase of the har-
monics to maximize the cosine component of the dominant
harmonics. The self-adjointness of the ideal MHD model
yields only the cosine harmonics for the chosen phase.
Thus, the appearance of the sine harmonics in Fig. 5 indi-
cates that self-adjointness is broken in the Hazeltine-Meiss
model. This is also indicated by the combination of finite
growth rate and finite frequency corresponding to a com-
plex eigenvalue.
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4. Discussion
Let us consider what causes the differences from the

MHD model. Ion diamagnetic drift has been predicted
to have a stabilizing effect on MHD instability and give
it a finite frequency of one-half the ion diamagnetic drift
frequency (ω∗i) [6]. The stabilizing effect is stronger for
higher ω∗i, and the instability is stabilized when ω∗i is two
times the ideal MHD growth rate. In Fig. 4, we show ω∗i/2
defined with the dominant poloidal mode number at the
peak location of the spatial profile. The real frequency
of the instability agrees well with the theoretically pre-
dicted ω∗i/2 for lower toroidal mode numbers for which
ω∗i is smaller than the ideal MHD growth rate. Because
the theory given in Ref. [6] is based on a perturbative ap-
proach in which the spatial profile of the instability is as-
sumed to be the same as that of the ideal MHD instabil-
ity, it is not applicable to the values of ω∗i equal to or
higher than the ideal MHD growth rate, where the spatial
profile deviates from the ideal MHD profile, as shown in
Figs. 3 and 5. The toroidal coupling induced by the dia-
magnetic drift may lead to a relatively large m/n = 6/−4
harmonic shown in Fig. 5. The results shown in Fig. 4 in-
dicate that ion diamagnetic drift effects reduce the growth
rate of the short-wavelength modes, so modes with a dia-
magnetic drift frequency comparable to the ideal MHD
growth rate (ω∗i ∼ γMHD) are most unstable.

The diamagnetic drift frequency is estimated by the
following equation, with the definition of the ion diamag-
netic velocity defined by Eq. (15),

ω∗i
ωA
≡ vpi · ∇
ωA

∼ mβ
4

(R
r

) (vA/Ωi

L

)
, (20)

where L,m, and Ωi are the pressure scale length, poloidal
mode number of the instability, and ion gyro frequency,
respectively. It is interesting that the scale length vA/Ωi is
identical to the ion skin length c/ωpi, where ωpi is the ion
plasma frequency. The ion skin length depends on the ion
mass, charge, and number density. Thus, Eq. (20) can be
rewritten as

ω∗i
ωA
∼ 1.8 × 10−2βmA1/2Z−1

×
[ ni

1019 m−3

]−1/2 [ a
1 m

]−1
(

a2

rL

) (R
a

)
, (21)

where ni is the ion number density of the plasma and a is
the plasma minor radius. For LHD plasmas with a = 0.6 m,

R/a = 6, and a2/rL = 6, Eq. (21) is reduced to

ω∗i
ωA
∼ βmA1/2Z−1

[ ni

1019 m−3

]−1/2
. (22)

For a beta of 2%, a number density of 1019 m−3, and a
poloidal mode number m ∼ 10, Eq. (22) yields a value of
0.2. This is a level comparable to the ballooning mode
growth rate shown in Fig. 2. This indicates that ion dia-
magnetic drift is important in reducing the growth rate for
higher mode numbers.

5. Conclusion
We have found a good agreement between simulation

results by using the MHD simulation code MIPS and lin-
ear analysis results by using the CAS3D code for balloon-
ing instability in LHD plasma. The MIPS code is a useful
tool for investigating MHD phenomena in toroidal plas-
mas. Furthermore, we have implemented the extended-
MHD model presented by Hazeltine and Meiss, which re-
tains ion finite Lamor radius effects, in the MIPS code. Ion
diamagnetic drift effects were found to reduce the growth
rate of the short-wavelength modes; hence, modes with a
diamagnetic drift frequency comparable to the ideal MHD
growth rate are the most unstable. The most unstable
toroidal mode number of the ballooning instability is re-
duced to |n| ≤ 5 for hydrogen plasma with ion number
density ni ≤ 1019 m−3.
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