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Quantum mechanical plasma diffusion is studied using a semi-classical model with two different charac-
teristic lengths; one is the average interparticle separation, and the other is the magnetic length. The diffusion
coefficients D derived in this study show a dependence on several plasma parameters, such as temperature T ,
mass m, density n, and magnetic field B, similar to that observed experimentally. The numerical values of the
diffusion coefficient D in this study are as large as that for neoclassical diffusion. We have pointed out in this
study that (i) for distant encounters in typical fusion plasmas of T = 10 keV and n = 1020 m−3, the average
potential energy 〈U〉 ∼ 30 meV is as small as the uncertainty in energy ΔE ∼ 40 meV, and (ii) for a magnetic
field B = 3 T, the spatial size of the wavefunction in the plane perpendicular to the magnetic field is as large as
�B ∼ 1.4 × 10−8 m, which is much larger than the typical electron wavelength λe ∼ 10−11 m.
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1. Introduction
More than half a century ago, it was noted that to cor-

rectly analyze diffusion of plasmas, one must consider the
wave character of charged particles when the temperature
T is high, i.e., the relative speeds of interacting particles
are high [1, 2]. The criterion for the classical theory to be
valid in terms of relative speed g in a hydrogen plasma is
given in Ref. [2] as

g � 2e2

4πε0�
= 4.4 × 106 m/s, (1)

where e = 1.60× 10−19 C, and � ≡ h/2π = 1.05× 10−34 J·s
represent the elementary electric charge and Planck con-
stant, respectively. In contemporary fusion plasmas with
T ∼ 10 keV or higher, ions as well as electrons should be
treated quantum mechanically. In current plasma physics,
however, the quantum mechanical effects enter as a minor
correction to the Coulomb logarithm, lnΛ, in the case of
close encounters [3]. Nonetheless, the neoclassical theory
is capable of predicting many phenomena, such as those re-
lated to current conduction. Such phenomena depend lin-
early on the change in velocity Δu or in position Δr. The
quantum mechanical changes, e.g., in the velocity QMΔu,
are stochastic. The average or expectation value of Δu con-
forms to the classical prediction CLΔu due to the Ehrenfest
theorem: for ξ = u, r

〈
Δξ

〉
=
〈

CLΔξ + QMΔξ
〉
= CLΔξ. (2)

However, diffusion is quadratic in Δg or Δr:

〈
(Δξ)2

〉
=
(
CLΔξ

)2
+

〈(
QMΔξ

)2
〉
>
(
CLΔξ

)2
. (3)
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This might explain why we cannot understand so-called
anomalous diffusion using classical theories that give only
the correct

〈
Δξ

〉
.

2. Uncertainties in Plasmas
A classical particle obeys the deterministic equation

of motion, which gives the particle’s trajectory in phase
space (r, u) at a time t. The actual trajectory of a particle
with mass m, however, is stochastic in the phase space with
uncertainties in position Δr, in velocity Δu, and in energy
ΔE in a time interval Δt because of the uncertainty relation:

ΔrΔv >
�

m
, ΔE >

�

Δt
. (4)

Equation (4) tells us that (i) a lighter particle has a larger
uncertainty in phase space, and (ii) the uncertainty in en-
ergy ΔE is larger for shorter time intervals. Since, for a
given time interval Δt, there are three unknowns in Eq. (4),
Δr, Δv, and ΔE, we need to find or impose another rela-
tionship among these uncertainties. For this purpose, let L
be the length the particle travels during some characteristic
time interval, i.e., L ≡ v0Δt, where v0 is the initial particle
speed.

In the presence of a static magnetic field B, the classi-
cal particle’s energy E = mu2/2 is a constant of the motion:

ΔE = mΔu ·
(
u0 +

Δu

2

)
= 0. (5)

The same relation as Eq. (5), ΔE = 0, holds for the relative
velocity g = ui − u j and its change Δg in binary Coulomb
interactions in the absence of a magnetic field. For a quan-
tum mechanical particle, ΔE is not necessarily zero due to
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the uncertainty relation:

ΔE ∼ mu0 · Δu > �
Δt
. (6)

Comparing Eq. (6) with the uncertainty relation in Eq. (4),
we have

Δr ∼ L, Δv >
�

mL
. (7)

Thus, the square of the uncertainty in the cyclotron center
rG = r + u × ω/ω2, where ω = qB/m is the cyclotron
frequency vector, is given by

(ΔrG)2 = (Δr)2 +

(
mΔu
qB

)2

∼ L2 +

⎛⎜⎜⎜⎜⎝�
2
B

L

⎞⎟⎟⎟⎟⎠
2

, (8)

where �B =
√
�/qB is called the magnetic length in quan-

tum mechanics.

2.1 Uncertainties in the presence of a B field
Note that the magnetic length �B =

√
�/qB is the spa-

tial size of a wave packet in the plane perpendicular to the
magnetic field [4], i.e.,

|ψ (r⊥, t)|2 = 1
π�2

B

exp
⎡⎢⎢⎢⎢⎣− (r⊥ − 〈r⊥ (t)〉)2

�2
B

⎤⎥⎥⎥⎥⎦ , (9)

where ψ (r⊥, t) stands for the wavefunction, and 〈r⊥ (t)〉 is
the classical position of the particle in the plane perpen-
dicular to B. The square of the cyclotron radius ρ2 and
the energy E are quantized with the energy levels, i.e., the
Landau levels [4], of N = 0, 1, 2, . . . , as follows:

ρ2
N = (2N + 1) �2

B, (10)

EN = (N + 1/2)�ω. (11)

Thus, the magnetic length �B is the cyclotron radius in
the ground state, N = 0. For example, for a magnetic
field B = 3 T, the spatial size of the wavefunction in the
plane perpendicular to the magnetic field is as large as
�B ∼ 1.4×10−8 m. This length is comparable to the average
interparticle separation Δ� ∼ 2×10−7 m and is much larger
than the typical wavelength of electrons, λe ∼ 10−11 m, in a
fusion plasma with a temperature T ∼ 10 keV and a num-
ber density n = 1020 m−3. Thus, a charged particle behaves
quantum mechanically for a time interval Δt = �B/v0, i.e.,
L = �B in the presence of a magnetic field.

2.2 Uncertainties in the absence of a B field
In the absence of a magnetic field, B = 0, choosing

L = Δ� ≡ n−1/3, where Δ� stands for the average interpar-
ticle separation, and n is the number density of the plasma,
the uncertainty in energy becomes

ΔE >
hgth

Δ�
∼ 40 meV (12)

for protons in a hydrogen plasma of T = 10 keV and n =
1020 m−3, where gth ≡

√
4T/mp ∼ 2×106 m/s is the relative

thermal speed, with mp being the proton mass. On the other
hand, the average potential energy U of a particle in the
plasma is approximately given by

〈U〉 ∼ U (Δ�/4) ∼ 30 meV, (13)

where U (r) = e2/4πε0r, r stands for the interparticle sep-
aration, and we have used 〈1/r〉 ∼ 4/Δ�. Thus, the po-
tential energy of a particle is, on the average, as small as
the uncertainty in energy in typical fusion plasma. This
means that binary interaction, especially diffusion, in plas-
mas might not be governed by the Coulomb potential but
by the quantum mechanical uncertainty: 〈U〉 ∼ ΔE. For
this reason we will select the characteristic lengths L = Δ�
and L = �B in the following section.

3. Semiclassical Model for Motion
Let us assume that a particle with a positive charge

q > 0 is moving in the presence of a uniform magnetic
field B = (0, 0, B) in the z-direction. First, we integrate the
equation of motion for the classical particle for the time
interval Δt to get the classical position in the phase space
(r (Δt) , u (Δt)),

r (Δt) = r (0) +
∫ Δt

0
u (t) dt, (14)

u (Δt) = u (0) +
∫ Δt

0
u (t) ×ω dt. (15)

As shown in Fig. 1, next we add the randomly oriented
uncertainties Δr, andΔu to r (Δt), and u (Δt), the magnitude
of which is given by Eq. (7):

r′ (Δt) = r (Δt) + Δr, (16)

u′ (Δt) = u (Δt) + Δu. (17)

This procedure is repeated until the time t reaches τc ≡
2π/ω, the cyclotron period.

Fig. 1 Semiclassical model for quantum motion. Particle ini-
tially at r (0) classically moves to r (Δt) with a velocity
u (Δt) at t = Δt − 0. At this time, it suffers quantum
mechanical deviations in position, Δr, and in velocity,
Δu. The particle is at r′ (Δt) with a velocity u′ (Δt) at
t = Δt + 0.
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Fig. 2 Deviation of cyclotron motion, δr ≡ r (τc) − r (0), due
to uncertainty in one gyration for a given characteristic
length L = v0Δt. Lengths are normalized by the cyclotron
radius ρ = mv0/qB.

Figure 2 shows the particle’s trajectory during one cy-
clotron period, in which a deviation δr ≡ r (τc)− r (0) from
the classical motion is seen.

From many Monte Carlo calculations of such devia-
tions (in this study, typically NMC ∼ 104 turns out to be
enough for convergence), the diffusion coefficient

D =

〈
(δr)2

〉
τc

(18)

will be obtained for a particular choice of the characteristic
length L, where 〈·〉 stands for the ensemble average,

〈
X2
〉
≡ 1

NMC

NMC∑
i=1

X2
i .

Figure 3 shows the histogram of δr for NMC = 5 ×
107 Monte Carlo trials, which resembles the probability
density function of a wavefunction in quantum mechanics.

In the following subsections we will choose the aver-
age interparticle separation Δ� ≡ n−1/3, and the magnetic
length, �B ≡

√
�/qB, as the characteristic length L.

3.1 Case A: L = interparticle separation, Δ�
If we choose the characteristic length L ≡ Δ�, where

Δ� ≡ n−1/3 stands for the average interparticle separation,
the time interval is Δt = Δ�/v0, and the uncertainty in en-
ergy is given as ΔE ∼ mv0Δv. Thus, from Eq. (7), we have

Δr ∼ Δ�, and Δv ∼ �

mΔ�
. (19)

The particle is a proton in typical fusion plasmas of
T = 1-100 keV, n = 1019-1021 m−3, and B = 1-10 Tesla.
The initial particle speed v0 is selected as the thermal speed
vth =

√
2T/m. The above calculation for a fixed T , n, and

B is repeated NMC = 104 times.
Figure 4 shows the temperature and density depen-

dence of the diffusion coefficient D = D (T, n), which leads
to a scaling of

DCase A ∼ 0.094
(TkeV

A

)0.50 (1020

n

)0.33

m2/s (20)

∝
√

T
m

n−1/3,

Fig. 3 Histogram for the deviation from the classical position,
δr = (δx, δy), normalized by the cyclotron radius ρ for
NMC = 5 × 107 Monte Carlo trials.

Fig. 4 Case A: Temperature T and density n dependence of dif-
fusion coefficient D [m2/s] with fitting lines in the case of
L = Δ�, the interparticle separation.

where A = m/mp is the mass number, with mp being the
proton mass. Interestingly, the diffusion coefficient D does
not depend on the magnetic field B, but on the particle mass
m−1/2. This is known as the isotope effect [5, 6].

3.2 Case B: L = magnetic length, �B.
The uncertainties for Case B, L = �B, are

Δr ∼ �B, and Δv ∼ �

m�B
. (21)

In this case, the time interval is Δt = �B/v0. The particle is
a proton in typical fusion plasmas of T = 1-100 keV, and
B = 1-10 Tesla. Note that the density n does not enter into
this case. Monte Carlo calculations are made, similar to
those for Case A.

Figure 5 shows the temperature T and magnetic field
B dependencies of the diffusion coefficient D, which leads
to scaling of

DCase B ∼ 0.033
(TkeV

AB

)0.50

m2/s ∝
√

T
mB

, (22)

in which
√

T/m scaling is the same as Eq. (21) for Case A.
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Fig. 5 Case B: Temperature T and magnetic field B dependence
of diffusion coefficient D [m2/s], with fitting lines in the
case of L = �B, the magnetic length.

4. Discussion
Case A, L = Δ�, considers interactions among plasma

particles, and Case B, L = �B, considers the interaction
of individual plasma particles with the magnetic field, i.e.,
the electrons moving in the external coils. Since both in-
teractions should occur in magnetically confined fusion
plasmas, we have the combined diffusion coefficient D =
DCaseA + DCaseB as

D∼
⎧⎪⎪⎨⎪⎪⎩

0.094(
n/1020)0.33 +

0.033√
B

⎫⎪⎪⎬⎪⎪⎭
√

TkeV

A
m2/s. (23)

Table 1 summarizes the dependence of D on plasma
parameters such as T , n, and B. The parameters’ ranges
are 1 ≤ T ≤ 100 keV, 1 ≤ B ≤ 10 Tesla, and, if applicable,
1019 ≤ n ≤ 1021 m−3. The ITER-89 dependence of D in the
table assumes D ∝ ρ2/τE, where τE is the energy confine-
ment time in the ITER-89 L-mode scaling law [7]. Note
that in ITER-89 L-mode scaling, the temperature T depen-
dence is absent. Instead, it contains the heating power P,
which should raise the temperature of the plasma; T should
be an increasing function of P. The diffusion coefficients
D from these models show a dependence on many param-
eters, such as the temperature T , mass m, density n, and
magnetic field B, similar to that observed experimentally.
Also, the proton diffusion coefficient is of the order of the
anomalous diffusion. For a typical hydrogen fusion plasma
(e.g., T = 10 keV, n = 1020 m−3, and B = 3 T), however,
the value of the proton diffusion coefficients in our model
are DCaseA ∼ 0.30 m2/s and DCaseB ∼ 0.08 m2/s, both of
which are one order smaller than the anomalous diffusion.

5. Summary
In current plasma physics based mainly on classical

mechanics, quantum mechanical effects arise in the case
of close encounters as a minor correction to the Coulomb

Table 1 Parameter dependence of D. The parameters’ ranges are
1 ≤ T ≤ 100 keV, 1019 ≤ n ≤ 1021 m−3, and 1 ≤ B ≤ 10
Tesla. The ITER-89 dependence of D in the table as-
sumes D ∼ ρ2/τE. Values are for hydrogen plasmas.

Model D ∝ TαmβnγBδ · · · Values
ITER-89 L-mode

√
P/m n−0.1B−0.2 ∼ 1 m2/s

Case A: Δ� = n−1/3
√

T/m n−1/3B0 0.1–2
Case B: �B =

√
�/qB

√
T/m n0 B−0.5 0.01–0.3

Neo-classical theory
√

m/T n B−2 ∼ 0.01

logarithm lnΛ. We have pointed out in this study that (i)
for distant encounters in typical fusion plasmas of T =
10 keV and n = 1020 m−3, the average potential energy
〈U〉 ∼ 30 meV is as small as the uncertainty in energy
ΔE ∼ 40 meV, and (ii) for a magnetic field B = 3 T, the
spatial size of the wavefunction in the plane perpendicu-
lar to the magnetic field is as large as �B ∼ 1.4 × 10−8 m,
which is much larger than the typical electron wavelength,
λe ∼ 10−11 m.

The diffusion coefficients of our semiclassical model
show a dependence on several plasma parameters, such as
the temperature T or the heating power input P, the mass
m or the isotope effect, the density n, and the magnetic
field B, that are qualitatively similar to those observed ex-
perimentally, as well as having values larger than those for
neoclassical diffusion.

In magnetically confined fusion plasmas, diffusion is
governed by the banana particle motion due to the toroidic-
ity of the magnetic field and the plasma current Ip, with
which we have not dealt in this study. The diffusion model
presented here is semiclassical, so we will need to solve
Schrödinger’s equation for exact analysis; this will be re-
ported soon.
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