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Relativistic Degeneracy Effect on Propagation of Arbitrary
Amplitude Ion-Acoustic Solitons in Thomas-Fermi Plasmas
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Arbitrary amplitude ion-acoustic solitary waves (IASWs) are studied using Sagdeev-Potential approach in
electron-positron-ion plasma with ultra-relativistic or non-relativistic degenerate electrons and positrons and the
matching criteria of existence of such solitary waves are numerically investigated. It has been shown that the
relativistic degeneracy of electrons and positrons has significant effects on the amplitude and the Mach-number
range of IASWs. Also it is remarked that only compressive IASWs can propagate in both non-relativistic and
ultra-relativistic degenerate plasmas.
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1. Introduction
Of the nonlinear excitations, ion-acoustic solitary

waves (IASWs) are of the most important and well-
understood characteristics of plasma environments. The-
oretical studies of main properties of these solitary struc-
tures date back to 1961 using Sagdeev pseud-potentials
method [1]. Another method which is widely used to in-
vestigate the collective wave phenomenon in plasma is the
so-called multi-scales perturbation method [2–8]. How-
ever, the latter method, which is based on approximation,
is used only for the small-amplitude treatment of plasma
in a state away from thermodynamic equilibrium. There-
fore to obtain a good agreement with experiments, in this
method, one needs to take higher-orders in perturbation
amplitudes. In recent years there have been many inves-
tigations on solitary IASWs as well as solitary electro-
static waves (ESWs) in diverse plasma environments us-
ing Sagdeev pseudo-potential approach [9–13]. The small
amplitude propagation and interaction of IASWs with rela-
tivistic degeneracy pressure effects have been recently con-
sidered in Ref. [14].

Among different kinds, pair-plasmas have attracted
special attention in recent years, a special cases of which
can be electron-positron (EP) and electron-positron-ion
(EPI) [15–19] plasmas. Electron-positron-ion plasma ex-
ists in places such as active galactic nuclei [20], pulsar
magnetospheres [21] and in many dense astronomical envi-
ronments, namely, neutron stars and white dwarfs [22] and
may play a key role in understanding the beginning and
evolution of our entire universe [23]. This kind of plasma
may also be practically produced in laboratories [24–27].
More specifically when positrons, due to their significant
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lifetimes, are used to probe particle transport in Tokamaks,
two component electron-ion (e-i) plasma behaves as three
component (e-p-i) plasma [25]. Furthermore, the wave
properties such as stabilities of a two component electron-
ion (EI) plasma solitary excitations may be radically al-
tered by inclusion of low amounts of positrons.

Owing to their wide applicabilities in micro- and
nano-electronic miniaturization, dense-plasmas is becom-
ing one of the interesting fields of theoretical as well as
experimental fields of plasma research [28–34]. Dense
plasma or the so-called quantum plasma are characterized
by high densities and low temperatures, however, a dense
plasma may be realized in such hot places as planet inte-
riors and white dwarfs [35]. More recently, quantum hy-
drodynamics model has been applied to study the electron-
hole dynamics in semiconductors [36, 37]. The quantum
effects in collective behavior of a plasma system becomes
important when the inter-particle distances are compara-
ble or less than the de Broglie thermal wavelength λB =

h/(2πmekBT )1/2 or equivalently when the thermal energies
of plasma species are less than Fermi-energies [38]. In
such cases the plasma becomes degenerate, in which the
plasma ingredients are under effective influence of Pauli
exclusion principle and classical statistical assumptions
break down. Quantum effects also play important role
in the nonlinear processes of white-dwarfs [39]. For in-
stance, for a cold neutron star the densities can be as high
as 1015 gm/cm−3 in the core, which is several times the
density of an atomic nuclei. In extreme conditions such
as the middle of a supernova or the core of a massive white
dwarf the densities can be even catastrophically higher. At
these very high densities the electrons and positrons may
become ultra-relativistic giving rise to the collapse of star
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under its giant gravitational force [40, 41].
The present study is devoted to investigation of prop-

agation of IASWs in an unmagnetized EPI plasma using
Sagdeev pseudo-potential method in such extreme condi-
tion, taking into account the relativistic degeneracy effects
for electrons and positrons. The basic normalized plasma
equations are introduced in Sec. 2. Nonlinear arbitrary-
amplitude solution is derived in Sec. 3. Section 4 devotes
to short argument about small amplitude IASWs. Numer-
ical analysis and discussion is given in Sec. 5 and final re-
marks are presented in Sec. 6.

2. Basic Plasma State Equations
Consider a dense plasma consisting of electrons,

positrons and positive-ions. Also, suppose that the elec-
trons and positrons follow the zero-temperature Fermi-
gas statistics, while, ions behave as classical fluid. In
such plasma electrons and positrons may be considered
collision-less due to Fermi-blocking process caused by
pauli exclusion principle. Therefore, the semi-classical de-
scription of nonlinear dynamics and interaction of waves
in such plasma can be studied in the framework of conven-
tional hydrodynamics model. The basic normalized equa-
tions describing plasma dynamical state may be written as

∂ni

∂t
+
∂

∂x
niui = 0,

∂ui

∂t
+ ui
∂ui

∂x
= −∂ϕ
∂x
,

∂2ϕ

∂x2
= ne − np − ni,

(1)

where, electrons and positrons are of Thomas-Fermi type

ne = (1 + ϕ)
3
2 , np = α(1 − σFϕ)

3
2 , α =

np0

ne0
, σF =

TFe

TFp
. (2)

In obtaining the normalized set of equations following
scalings are used

x→ vFe

ωpi
x̄, t → t̄

ωpi
, n→ n̄n(0), u→ ūvFe, ϕ→ ϕ̄2kBTFe

e
,

(3)

where, ωpi =

√
e2n(0)

e /ε0mi and vFe =
√

2kBTFe/mi are
characteristic plasma-frequency and electron Fermi-speed,
respectively, and n(0)

e denotes the equilibrium electron den-
sity (n(0)

e = (8π/3�3)p3
Fe with pFe being the electron linear

Fermi-momentum). In a fully degenerate Fermi gas one
may write the electron degeneracy pressure in the follow-
ing general form [40]

P =
πm4

ec5

3h3

[
r
(
2r2 − 3

) √
1 + r2 + 3sinh−1r

]
, (4)

where, h and c are Plank constant and light-speed, respec-
tively, and r = pFe/mec is the normalized relativity param-
eter. The electron number density can then be defined in

terms of the relativity parameter (ne = (8πm3
ec3/3h3)r3).

It is noted that in the limits of very small and very large
values of the relativity parameter we obtain

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
20

(
3
π

) 2
3 h2

me
n

5
3
e (r → 0)

1
8

(
3
π

) 1
3 hcn

4
3
e (r → ∞)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5)

Therefore, in a three-dimensional non-relativistic zero-
temperature Fermi-gas for degenerate electrons and
positrons from standard definitions we obtain EFj =

�
2k2

Fj/2mj (j = e, p) or EFj ∝ n2/3
j,0 , which follows that

σF = α
−2/3. On the other hand, three-dimensional ultra-

relativistic Fermi-gas, we have EFj = c�kFj or σF = α
−1/3.

It is noted that in our model the inertial ions are always
non-relativistic, hence, the non-relativistic hydrodynamics
equation has been used in Eqs. (1). Therefore, the Poisson
equation reads as

∂2ϕ

∂x2
= (1 + ϕ)

3
2 − α(1 − σFϕ)

3
2 − ni. (6)

At the equilibrium situation the overall neutrality condition
gives rise to the following relation

β = 1 − α, β = ni0

ne0
. (7)

3. One-Dimensional Arbitrary-Am-
plitude Analysis
In this section we derive an appropriate Sagdeev

pseudo-potential describing the dynamics of arbitrary-
amplitude IAWs in plasma containing classical heavy pos-
itive ions and inertial-less relativistic or non-relativistic
Thomas-Fermi electrons and positrons, obeying the
three-dimensional distributions in Eqs. (2). Using one-
dimensional version of Eqs. (1), in a reduced coordinate
η = x − Mt (M being Mach number which is a measure of
soliton speed relative to ion-sound speed), from continuity
and momentum equations we obtain

ni =
1 − α√
1 − 2ϕ

M2

, (8)

where, we have used the fact that ϕ → 0, ui → 0 and
ni → β at η → ±∞. Now, substituting Eq. (8) and Eq. (2)
in Poisson’s equation in Eq. (1), multiplying by dϕ/dη and
integrating with boundary conditions {ϕ, dϕ/dη} → 0 for
η→ ±∞, we derive

1
2

(
dϕ
dη

)2

+ V(ϕ) = 0, (9)

where, the Sagdeev pseudo-potential V(ϕ) reads as

V(ϕ) =
2
5

[
1 − (1 + φ)5/2

]
+

2α
5σF

[
1 − (1 − σFφ)

5/2
]

+ M2β

⎡⎢⎢⎢⎢⎢⎣1 −
√

1 − 2φ
M2

⎤⎥⎥⎥⎥⎥⎦ . (10)
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For the reality of V(ϕ) to be ensured we must have ϕ ≤
M2/2 and ϕ ≤ σ−1

F . The possibility of IAWs, therefore,
require that

V(ϕ)|ϕ=0 =
dV(ϕ)

dϕ

∣∣∣∣∣
ϕ=0
= 0,

d2V(ϕ)
dϕ2

∣∣∣∣∣∣
ϕ=0

< 0, (11)

it is further required that a ϕm exists such that V(ϕm) = 0
and for every ϕm > ϕ > 0 then V(ϕ) < 0.

4. Small Amplitude Theory
Let us consider the small-amplitude limit in the above

analysis. Expanding the potential V(ϕ) in (10) near ϕ = 0,
we obtain

V(ϕ) =
V ′′0
2
ϕ2 +

V ′′′0

6
ϕ3, (12)

where, V ′′0 = V ′′(ϕ = 0) and V ′′′0 = V ′′′(ϕ = 0) are com-
puted from Eq. (10) as

V ′′0 = −
3
2
− 3ασF

2
+

1 − α
M2
, (13)

Fig. 1 The stability regions (dark) of arbitrary amplitude IASWs is shown in α − M plane for non-relativistic (Fig. 1 (a)) and ultra-
relativistic (Fig. 1 (b)) electron/positron degeneracies. Figures 1 (c) and 1 (d) show the corresponding pseudo-potential dips for
varied fractional positron to electron number-densities, α = 0.3 (blue), α = 0.4 (grey) and α = 0.5 (red), and fixed Mach-number
in non-relativistic (Fig. 1 (c)) and ultra-relativistic (Fig. 1 (d)) electron/positron degeneracies, respectively.

V ′′′0 = −
3
4
+

3ασ2
F

4α
+

3(1 − α)
M4

. (14)

Inserting into Eq. (9) and integrating, we obtain (pro-
vided that V ′′0 < 0) a solitary solution in the form (see [42])

ϕ(η) = −3
V ′′0
V ′′′0

1

cosh2( 1
2

√−V ′′0 η)
. (15)

This pulse profile is identical to the soliton solution of the
Korteweg-de Vries (KdV) equation, which is obtained by
use of the reductive perturbation method, for example see
[43]. It is important to notice that the soliton width L =
2/

√−V ′′0 and amplitude ϕ0 = −3V ′′0 /V
′′′
0 satisfy ϕ0L2 =

12/V ′′′0 = constant, as known from the KdV theory.

5. Numerical Analysis and Discussion
As it was pointed out in Sec. 3, the ion-acoustic soli-

tary waves (IASWs) exist if the Sagdeev pseudo-potential
satisfies the following conditions: (i) d2V(ϕ)/dϕ2

∣∣∣
ϕ=0
< 0,

which reveals that the fixed point ϕ = 0 is unstable; (ii)
V(ϕm) = 0, where, ϕm is the maximum value of ϕ; and (iii)
V(ϕ) < 0 when ϕm > ϕ > 0.
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Noticing these conditions, Fig. 1 (a) and Fig. 1 (b)
show the areas in M-α plane, where: namely, IA solitary
waves can exist for non-relativistic and ultra-relativistic
electron-positron degeneracy, respectively. It is remarked
that, the minimum values of Mach number, M, decreases
as the fractional positron to electron number-density ratio,
α, increases for ultra-relativistic case (see Fig. 1 (b)). Nev-
ertheless, the minimum values of M increases and reaches
to a given maximum value then decreases as α increases
(see Fig. 1 (a)). On the other hand, the maximum value
of M increases as α increases up to the value α 	 0.37
(α 	 0.28) for non-relativistic (ultra-relativistic) case. The
maximum value of M decreases as α increases in the range
1 > α > 0.37 (1 > α > 0.28) for non-relativistic (ultra-
relativistic) case.

Comparing Fig. 1 (a) and Fig. 1 (b) reveals that both
supersonic and subsonic IASWs can propagate in ultra-
relativistic case, whereas, only subsonic propagations can
occur for non-relativistic case. Although both of su-

Fig. 2 (a) Ion acoustic solitary wave profiles obtained by numerical solutions of Eq. (9) corresponding to pseudo-potentials shown in
Fig. 1 (d) which correspond to the values α = 0.25 (black), α = 0.5 (blue) and α = 0.75 (red). (b) Profiles for different supersonic
values of Mach-number M = 1 (black), M = 1.05 (blue) and M = 1.1 (red). (c) Comparison between non-relativistic (thin-line in
black) and ultra-relativistic (thick-line in blue) electron/positron degeneracies for similar values of α and M.

personic and subsonic IASWs can propagate in ultra-
relativistic degeneracy case, however, the former exist only
for very small range of α, for approximately, 0.07 > α >
0.4. For α = 1 i.e., in the absence of ions, V(ϕ) does not
depend on Mach number, M. This case corresponds to the
solution of Poisson equation.

In Fig. 1 (c) and Fig. 1 (d), we have numerically ana-
lyzed the Sagdeev potential (Eq. (3)) and investigated the
effects of allowed values of M and α on the profile of the
potential-well for both cases of non-relativistic and ultra-
relativistic degeneracy. It is remarked that for fixed α (M)
value, the increase of Much number M (α values) gives rise
to an increase of both the potential depth and amplitude.
The energy equation Eq. (9) has been numerically solved
for some values of α and M. The potential pulse profiles
has been depicted in Figs. 2 (a)-(c). It is obvious that the
potential profile becomes taller and narrower by increas-
ing α and M for both types of non-relativistic and ultra-
relativistic degeneracy, which is in agreement with above
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result. Also, we note that higher pulses are narrower, while
shorter are wider, in agreement with the existing soliton
phenomenology. Another important result is that the am-
plitude of pulse in non-relativistic case is higher than ultra-
relativistic one for fixed values of α and M (Fig. 2 (c)). Fi-
nally, we note that rarefactive IASWs do not exist for both
of non-relativistic and ultra-relativistic degeneracy cases.

6. Conclusion
The Sagdeev-Potential approach was used to in-

vestigate the propagation of ion-acoustic solitary waves
(IASWs) in electron-positron-ion plasma with ultra-
relativistic or non-relativistic degenerate electrons and
positrons. The matching criteria of existence of such soli-
tary wave were numerically investigated for both cases
of ultra-relativistic or non-relativistic degenerate electrons
and positrons. It is remarked that the characteristics of
nonlinear IASW propagation differ in the mentioned cases.
Both supersonic and subsonic IASWs can propagate in
ultra-relativistic case, whereas, only subsonic propaga-
tions can occur for non-relativistic case. Only compressive
IASWs can propagate in both of desired non-relativistic
and ultra-relativistic degenerate plasmas. Also, it was con-
cluded that, the differences tend to amplify by moving
towards smaller values of fractional positron-to-electron
number-density α. In this work we consider cold ions and
the effects of warm ions on IASWs in such plasmas can be
investigated in future.
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