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Multi-pass Thomson scattering is an attractive method for measuring electron temperature and density in
low density plasmas. The feasibility of multi-pass laser optics consisting of two confocal spherical mirrors has
been studied, and analytic expressions for the path have been obtained. These can be used to optimize the design
under the given conditions. The effects of aberration, as well as positioning and alignment errors, were found to
be critical for obtaining large transit numbers. Beam expansion resulting from aberration, surface roughness of
the mirrors and diffraction is considered. Under practical conditions, transit numbers of about 37 (i.e., 19 round
trips) are possible.
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Multi-pass Thomson scattering has the advantage of
enhancing the scattered signal by accumulating signals
from multiple passes through the plasma. On the TST-2
spherical tokamak device, non inductive start-up exper-
iments were conducted using ECH (2.45 GHz/5 kW) [1].
According to interferometric measurements, typical elec-
tron densities are ne ∼ 1017 m−3, about two orders of mag-
nitude lower than typical densities in ohmic discharges.
Therefore, enhancement of the scattered signal by a multi-
pass scheme is necessary.

On TEXTOR, multi-pass measurements were carried
out using two spherical mirrors. The mirrors can be aligned
for different number of passes, such as double- and six-
pass. In this six-pass system, the laser beam passes through
the plasma six times and returns to the laser rod. Compared
with the double-pass system on TEXTOR, the pulse prob-
ing energy was increased by a factor of 2.6 and the total
probing energy during each 9 ms pumping pulse was in-
creased by a factor of 4. In this system, the angles of the
mirrors must be aligned with a precision of ∼10−5 rad [2].
Although their achievement is remarkable, it uses an intra-
cavity configuration in which the mirrors for the multi-pass
system enclose a laser cavity and the laser oscillates along
the scattering path. Such a scheme may not be useful for
devices in which the laser system is independent from the
rest of the optical system. Furthermore, the dependence
of the pass and transit numbers on the optical parameters
and the theoretical limits of multi-pass optics have not been
clarified. In this paper, theoretical aspects of the confo-
cal mirror system are studied. General expressions for the
beam path and transit number of a confocal spherical mir-
ror system are obtained for a general configuration.
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Several schemes are possible for multi-pass optics. (i)
The first is coaxial confinement using a fast gate such as a
Pockels cell. By switching the Pockels cell, the laser po-
larization can be changed. Laser light can be confined by
combining a Pockels cell and a polarizer. An advantage of
this scheme is that the alignment procedure is simple be-
cause the optical axis is unique. (ii) A system with two
parallel mirrors is the simplest. While laser light travels
between the two mirrors, the reflection point moves slowly
along each mirror. Since the beam axis moves, the max-
imum transit number is determined by the allowable mo-
tion of the axis. (iii) A confocal spherical mirror system
is as simple as a two parallel mirror system, but the beam
paths tend to converge to the axis of the mirrors, and a
large transit number is assumed to be possible. This paper
presents the results of a theoretical analysis of the confocal
mirror system, particularly the maximum transit number.
The beam path is formulated analytically. In addition, the
effects of positioning and alignment errors are formulated.

A confocal mirror system consists of two concave
mirrors with a common focal point and a common axis
(Fig. 1). Incident light parallel to the mirror axis is re-
flected by the first mirror (at height z1 > 0), passes through
the focal point, and hits the second mirror (at height z2 <

0). The light is reflected by the second mirror, becomes
parallel to the mirror axis, and hits the first mirror (at height
z3 < 0). This process is repeated, and the light gradually
approaches the mirror axis. How it approaches the axis
depends on the focal lengths of the two mirrors. When
parabolic mirrors are used, the light converges to the axis;
whereas in the case of spherical mirrors, the light deviates
from the axis after a certain number of transits because of
aberration. In general, the surface accuracy of parabolic
mirrors is not as good as that of spherical mirrors. More-
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Fig. 1 Schematic drawing of a confocal spherical mirror system.
Important variables are defined in the figure.

Fig. 2 Definitions of the injection angles φ1 and φ2 and hit posi-
tions z1, z2 and θr, θl.

over, spherical mirrors with various focal lengths are read-
ily available. Therefore, in this paper, we study confocal
mirror systems consisting of spherical mirrors. In addition
to aberration, we need to consider the accuracy of align-
ment and positioning. Note that a parabolic mirror has a
unique optical axis, whereas the optical axis of a spheri-
cal mirror is not unique. Therefore, the alignment is much
more difficult for parabolic mirrors than that for spherical
mirrors.

The system is identified by the following five vari-
ables: injection angle φ1; hit position z1 on the first mirror;
focal lengths f1, f2 ( f1 ≥ f2); and the distance between
the mirrors L. The radii of curvature for the mirrors are
r = 2 f1 and l = 2 f2 (Fig. 2). The angles θr = arctan(z1/r)
and θl = arctan(−z2/l) determine the hit points. The inci-
dent condition (i.e., the initial condition) is defined by the
incident angle φ ≡ φ1 and the normalized first hit point
z ≡ z1/r. In the following, we assume z � 1, because z1

is smaller than the window radius and r and l are larger
than the diameter of the device. In particular, z1 is several
tens of millimeters, whereas r and l are several meters. We
derive analytic expressions to determine the path as a func-
tion of φ and z. In the derivation, we keep terms up to O(z3)
and neglect the higher-order terms. We assume φ = O(z3).

The angle of the reflected light φ2 from the first mirror
is

φ2 = 2θr − φ1 ≈ 2z +
z3

3
− φ . (1)

Here, we use the approximation θr ∼ z + z3/6. Since the
mirrors have a finite thickness, the distance between the
two hit points differs from L by about (z2

1/r + z2
2/l)/2.

The difference is O(z2) × L. Using the distance between
the two hit points and φ2, the position of the second hit
point is

ẑ2 = − l
r

z − L
r

z3 +
L
r
φ . (2)

Here, ẑi ≡ zi/r is the normalized i-th hit point. In the same
manner,

φ3 = 2θl − φ2 ≈
(
1 +

r
l

)
z3 − r

l
φ , (3)

ẑ3 = − l
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z +
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(
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(
l
r
− r

l

)
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Here, we use the approximation θl ∼ −z2/l − z3
2/6l3. In

these expressions, the terms that include z3 are minute, be-
cause z � 1. Typical z values are on the order of 10−2.
These terms reflect the thicknesses and aberration effects
of the mirrors. When terms including z3 are neglected, |φ3|
becomes larger than |φ| by a factor r/l > 1, while |z3| be-
comes smaller than z by a factor l/r < 1. Thus, one may
expect z1 > |z3| > |z5| > . . .. After several reflections be-
tween the mirrors, however, the terms including z3 become
significant, as shown below. Using Eqs. (3) and (4), φ3 and
z3 can be derived from φ and z. Therefore, these equations
form a recursive set. The general formulae for φ2n−1 and
z2n−1 are

φ2n−1 = (−1)nP2n−1(x)z3 + (−x)1−nφ , (5)

ẑ2n−1 = (−x)n−1z +
1
2

(−1)nP2n−1(x)z3

+
1
2

(−1)n(xn−1 − x1−n)φ , (6)

P2n−1(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
4n−7∑
i=0

x1−n+i

⎞⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎝

n−3∑
i=0

x4−n+4i

⎞⎟⎟⎟⎟⎟⎟⎠

−
⎛⎜⎜⎜⎜⎜⎜⎝

n−3∑
i=0

x3−n+4i

⎞⎟⎟⎟⎟⎟⎟⎠ , (7)

where x ≡ l/r < 1. During the initial phase, while the
transit number is small, |ẑ2n−1| decreases with increasing
n. However, Eq. (6) includes x1−n, so this term becomes
significant for large n. As a result, |ẑ2n−1| increases with
n once n exceeds a certain number. Figure 3 shows an
example of z2n−1 as a function of n. Here, we assume a
configuration with the following parameters: f1 = r/2 =
762 mm, f2 = l/2 = 508 mm, L = f1 + f2 = 1270 mm,
z1 = 35 mm, and φ1 = 0.32 mrad. These parameters are
chosen to duplicate the experiment described below. In
Fig. 3, z2n−1 calculated by Eq. (6) and that calculated by a
ray tracing code are plotted. This code tracks a ray with a
given starting position and vector. When the ray hits one
of the spherical mirrors, it is reflected according to the law
of reflection. The z-coordinates of the reflection points are
compared with the results of the analytical expression. The
difference between the values obtained by Eq. (6) and the
code is as small as 0.3% when 2n − 1 = 25. |z2n−1| exhibits
a minimum at around 2n − 1 = 13.
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Fig. 3 Hit positions for each transit number 2n − 1 derived by
the analytic formula (+) and a ray tracing code (circles).

Considering x < 1, Eq. (6) for large n can be approxi-
mated by the leading term

ẑ2n−1 =
1
2

(−1)nx1−n(z3 − φ) , (8)

because this term includes x1−n. Note that the next lead-
ing term, which includes x2−n, becomes important when
z3 ∼ φ. Given the size of the first mirror, we can express
the maximum transit number for this confocal mirror sys-
tem. The radius of the first mirror should be larger than
z1. We define the maximum transit number as the largest
2n − 1 satisfying |ẑ2n−1| < z. Hereafter, the maximum tran-
sit number is referred to as 2Nmax−1. Taking the logarithm
of Eq. (8), Nmax is

Nmax = 1 +
log(2z/|z3 − φ|)
| log(x)| . (9)

When z3 = φ, we cannot use approximation (8), and we
should extract the terms that include x2−n from Eq. (6).
Then, the expression for Nmax is

Nmax = 2 +
log(2/z2)
| log(x)| . (10)

As we remove the x1−n term by setting z3 = φ, we can
remove the x2−n term by adjusting φ. In this way, Nmax

can be infinity. However, the difference between the op-
timum φ and φ = z3 is very small and finite errors in L
and φ may reduce the maximum transit number. The re-
sults of the detailed analysis on the effects of errors in L
and φ are described below. Equations (9) and (10) show
that z should be small, r/l = 1/x should be close to 1,
and φ should be close to z3 in order to obtain a large Nmax.
Figure 4 shows a photograph of the first mirror of the con-
focal mirror system with the same parameters as the exam-
ple described above. We used a He-Ne laser. Reflection
spots are visible in the photograph. After 21 transits, the
beam diameter increases to more than 40 mm and the spot
becomes faint; hence, it becomes impossible to identify

Fig. 4 Photograph of the first mirror of the confocal mirror sys-
tem. Hit spots are numbered sequentially from 1 to 11.

further reflections. Although we used two convex lenses
to suppress the beam expansion, the spot size increases.
We will discuss this phenomenon later. The positions of
the reflection spots agree with the results of analytic ex-
pression (6) within the margin of reading error. In this
experiment, we set φ1 = 0.32 mrad in order to compare
the experiment and the analytic formula. By adjusting the
angle, the experimentally obtained maximum transit num-
ber was 28, whereas the maximum transit number was 43
at φ = 0 using formula (9). The difference is partly due
to difficulties in identifying reflection spots, as the beam
becomes faint after a few tens of transits. Another reason
for the difference is the effect of positioning and alignment
errors. These effects are described below.

In practice, these errors cannot be ignored, and they
may significantly modify Eqs. (5) and (6) and Nmax. Since
the effect of angular error is already included in φ, we de-
scribe here the effect caused by the difference ε ≡ L − f1 −
f2. As in the preceding analysis, we keep the terms of O(z3)
and neglect the higher-order terms. We assume φ = O(z3)
and q = O(z2), where q ≡ ε/l is the normalized difference.
Replacing L with L + ε, the modified φ2n−1 and z2n−1 are

φ2n−1 =
4q

1 − x2
[(−x)n−1 − (−x)1−n]z

+ (−1)nP2n−1(x)z3 + (−x)1−nφ , (11)

ẑ2n−1 = {(−x)n−1 +
2xq

1 − x2
[(−x)n−1 − (−x)1−n]}z

+
1
2

(−1)nP2n−1(x)z3

+
1
2

(−1)n(xn−1 − x1−n)φ . (12)

Equations (11) and (12) include new terms proportional to
qz, which do not appear in Eqs. (5) and (6). From these
formulae, the modified maximum transit number 2Nmax−1
is derived as

Nmax = 1 +
log(2z/|z3 − φ + 4xq

1−x2 z|)
| log(x)| . (13)
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We extract the terms including x1−n as before. The ad-
ditional term 4xqz/(1 − x2) appears, which do not appear
in Eq. (9). Equation (13) indicates that z and q should be
small, r/l = 1/x should be close to 1, and φ should be close
to z3 in order to obtain a large Nmax. In practice, Nmax is
often limited by positioning and alignment errors, which
are expressed by q and a finite difference in φ from the
optimum value.

In a practical system, the beam has a finite size, and
the second mirror should be small enough not to cut the
incident beam propagating toward the first mirror. This
condition imposes a maximum limit on (x < 1); thus, we
cannot choose x very close to one. Obviously, z2 ≈ (−xz1)
should be larger than the beam radius. Furthermore, the
window sizes of the laser injection and exit ports must be
larger than z1. Therefore, z1 and x must be chosen to sat-
isfy these experimental conditions. L = ( f1 + f2) is the
distance between the mirrors, which should be larger than
the plasma size, so that the mirrors are located outside the
plasma. In addition, in order to distinguish the forward-
and backward-scattered signals, L should be large enough
to separate these signals in the time domain.

Here, we discuss the mechanism of beam expansion,
which can be seen in Fig. 4. The effects of aberration, sur-
face roughness, and diffraction can cause beam expansion.
First, we estimate the effect of aberration by using Eq. (12).
By linearizing the final position z2n−1 with respect to the
deviation in the initial condition δz1, δφ, we can estimate
the beam expansion. The final beam diameter Da is

Da = 2
∣∣∣∣∣∂ẑ2n−1

∂z
δz + r

∂ẑ2n−1

∂φ
δφ

∣∣∣∣∣ . (14)

Substituting δz1 = 2.5 mm, δφ1 = 0.7 mrad and ε =
15 mm, Da becomes 39 mm after 21 transits. Here, δz1 is
the initial beam radius and δφ1 is the beam divergence of
the incident laser light under the experimental conditions.
We used the terms that include x1−n and x2−n, because they
are dominant in the present configuration. Second, we es-
timate the effect of angular scattering of the rays due to the
surface roughness of the mirror. If the angular error gen-
erated at the (2i − 1)th reflection is denoted by θ2i−1, the
(2n − 1)th normalized position of the beam spot ẑ′2n−1 is

ẑ′2n−1 = ẑ2n−1 +

n−1∑
i=2

θ2i−1

2
(−1)n−i+1(xn−i − xi−n)

≈ ẑ2n−1 +
θ3
2

(−1)nx2−n , (15)

where ẑ2n−1 is the ideal position calculated by Eq. (12). θ3
is the dominant term because x < 1 and θ1 can be made
zero by adjusting the initial angle φ1. When the surface
roughness (i.e., deviation from a sphere) is λ/4, the corre-
sponding θ is less than 0.01 mrad and the resultant beam
diameter is Dr < 0.3 mm. Thus, this effect is negligi-
ble. Third, we estimate the effect of diffraction assuming a
Gaussian beam. The formulae for Gaussian beam imaging

Fig. 5 Spot size on the mirrors for each transit number 2n − 1
assuming a Gaussian beam. f1 = 762 mm, f2 = 508 mm,
ε = 0 mm, d1 = 10, 000 mm, and w1 = 1 mm.

by using an optical component with a focal length f are

d2 =

(
πw2

1
λ

)2
1
f − d1

(
1 − d1

f

)
(
πw2

1
λ

)2 (
1
f

)2
+

(
1 − d1

f

)2
, (16)

(
w2

w1

)2

=
1(

πw2
1
λ

)2 (
1
f

)2
+

(
1 − d1

f

)2
. (17)

Here, d1 and d2 are the anterior and posterior focal lengths,
respectively, and w1 and w2 are the waist sizes at these focal
points. Since the initial injected beam is nearly collimated,
d1 	 f and w1 	 λ. After the first reflection, the beam has
a waist near the focal point of the confocal mirror system.
After the second reflection, the beam is nearly collimated.
These initial behaviors are similar to those in geometrical
optics. However, the Gaussian beam shows different be-
havior after several transits. Figure 5 shows the calculated
spot size on the mirrors. The configuration parameters are
as follows: f1 = 762 mm, f2 = 508 mm, the initial anterior
focal length is d1 = 10, 000 mm, w1 = 1 mm, and ε = 0.
When we consider a finite error in the distance between
the mirrors, ε = −30 mm, the spot diameter after 21 tran-
sits is about Dd = 34 mm. Therefore, both aberration and
diffraction can cause beam expansion.

We present as an example the confocal spherical mir-
ror system design for multi-pass Thomson scattering in
the QUEST spherical tokamak device [3]. The radius of
the vacuum vessel is 1.4 m. However, we choose L =
5500 mm. With this L, forward- and backward-scattered
signals are separated by about 20 ns, which is sufficient
for a fast detection system [4]. To pass a laser beam
with a diameter of 8 mm, we choose the following pa-
rameters: mirror radii D1 = 50 mm, D2 = 42 mm; focal
lengths f1 = 3100 mm, f2 = 2400 mm, and z1 = 21 mm
(z = 3.39 × 10−3); and φ = 0. In this case, the maximum
transit number 2Nmax − 1 = 95 by using Eq. (9). To ensure
a transit number of more than 40, the allowable position-
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ing and alignment errors are |ε| < O(z2)× l ≈ 0.06 mm and
|φ| < 4.5 × 10−5 rad from Eq. (13). For large ε ≈ O(z) × l,
the approximate expression (13) cannot be applied. Using
Eq. (12), the allowable positioning error is |ε| < 7.4 mm (in
contrast, using Eq. (13), the allowable positioning error is
|ε| < 8.4 mm). When we take parameters d1 = 10, 000 mm
and w0 = 5 mm, the beam diameter expands to D > 40 mm
owing to diffraction. Therefore, the maximum transit num-
ber for practical conditions will be about 37.

In summary, the feasibility of multi-pass laser optics
consisting of two confocal spherical mirrors has been
studied. We obtained analytic expressions for the path and
the maximum transit number, φ2n−1, z2n−1, and 2Nmax − 1.
The effects of aberration, positioning and alignment errors,
and beam expansion are considered. An example of a con-
focal spherical mirror system design was described. In the

example, the maximum transit number can be more than
37, considering typical positioning and alignment errors
and beam expansion.
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