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A methodology describing the particle motion in a spatially localized high-power laser field in the relativis-
tic regime is presented based on the noncanonical Lie perturbation method, which is comprehensive compared
with those based on the conventional averaging method to the equation of motion. We successfully derived the
relativistic ponderomotive force in a laser field with a radial intensity gradient and the corresponding particle dy-
namics up to the first order with respect to the expansion parameter ε ∼ λ/L (= laser wavelength/scale length of
the transverse laser amplitude). The longitudinal motion was found to be secular and characterized by a growing
oscillation exhibiting a cubic dependence on the laser amplitude.
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The development of ultra-short pulse high-power
lasers with intensities of 1018-22 W/cm2 has opened
up various applications such as compact accelerators,
fast ignition-based laser fusion and high-intensity X-
ray/neutron sources [1]. Recently, innovative ideas aiming
at higher intensities of 1023-26 W/cm2, where not only elec-
trons, but also ions can exhibit relativistic characteristics,
have been proposed. These ideas may lead to new scien-
tific discoveries that have not been experienced in labora-
tories [2]. In order to realize such high intensities, a further
reduction in the pulse width and/or the spot size is neces-
sary. In such spatially localized laser fields, the pondero-
motive force (light pressure) exists inevitably and plays an
essential role [3, 4]. The ponderomotive force has tradi-
tionally been derived by applying the averaging method di-
rectly to the equation of motion using the spatio-temporal
scale separation. However, the method is not so prospec-
tive in capturing the particle motion precisely, especially in
the tightly focused nonlinear relativistic regime where the
higher-order terms, such as the curvature of the laser field
amplitude, play an important role.

The Hamiltonian perturbation theory employing non-
canonical variables and the Lie transformation has been in-
vestigated for analyzing the particle motion in electromag-
netic fields [5]. The method has been successfully intro-
duced as the gyro-kinetic formalism for describing mag-
netically confined fusion plasmas [6]. Kishimoto et al. ap-
plied the method for the first time to the analysis of a rela-
tivistic beam orbit in a free-electron laser and showed that
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the method is superior and powerful in describing the rela-
tivistic beam dynamics [7].

Motivated by these achievements, we extend this
method to the analysis of the particle motion irradiated
by spatially localized high-power lasers. As the first step,
here, we derive the relativistic ponderomotive force and the
related particle dynamics in a focused laser field.

We consider a particle with charge q in a high intensity
laser field propagating in the z-direction but localized in
the transverse x-direction, which is expressed by the vector
potential, A(x, η) = Axêx = A0(x) sin ηêx, where η ≡ ωt −
kz is the phase. Here, we introduce an expansion parameter

ε ∼ λ/L, where λ (= 2π/k) and L (≡ ∣∣∣∂x log A0

∣∣∣−1
) are

the laser wavelength and the transverse scale length of the
laser field amplitude, respectively. Using this parameter,
we expand the amplitude of the vector potential around the
initial particle position x = x0 as

A0(x)=A0(x0)+εx̃∂xA0(x0)+ε2 x̃2

2!
∂2

xA0(x0)+ · · · , (1)

where x̃ = x − x0 and ∂xA0(x0) denotes ∂A0(x)/∂x|x=x0 .
Here, we perform the Hamiltonian perturbation anal-

ysis by using noncanonical variables and the Lie trans-
formation. We introduce the extended phase space ex-
pressed by the canonical variables as zμ = (t; q, pc) =
(t; qx, qy, qz, pcx, pcy, pcz), where the time t is the indepen-
dent variable. The corresponding covariant vector is given
by γμ = (−h; pc, 0), where h is the relativistic Hamiltonian
expressed as
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h(q, pc, t) =

√
m2c4 + c2

(
pc −

q
c

A
)2
. (2)

In this paper, we use Latin indices that run from 1 to 6
whereas Greek from 0 to 6. Using these notations, the
variational principle from which the equations of motion
can be derived is expressed as δ

∫
γμdzμ = 0. The general

transformation law from γμ to the new covariant vector Γμ
under arbitrary coordinate transformation zμ → Zμ is given
by Γμ = γν∂zν/∂Zμ.

As a preparatory transformation, we first intro-
duce a noncanonical coordinate, zμ = (t; x, p) =

(t; x, y, z, px, py, pz), where p = pc − qA/c is the me-
chanical momentum and x = q. The corresponding
covariant vector is then calculated as γμ = (−h; px +

qAx(x, z, t)/c, py, pz, 0, 0, 0), where the Hamiltonian is ex-
pressed as h =

√
m2c4 + c2 p2. Note that the field A does

not explicitly appear in the Hamiltonian but in the first
component of γμ, which simplifies the perturbation anal-
ysis.

Next, we introduce phase η instead of the time t as
the independent variable in order to distinguish the secular
motions from the whole particle dynamics. This procedure
is also the noncanonical transformation by which the new
coordinate zμ and the new covariant vector γμ are obtained
as

zμ = (η; x, y, z, px, py, pz), (3)

γμ= (−K; px+qAx(x, η)/c, py, pz−kK, 0, 0, 0), (4)

where K = ω−1
√

m2c4 + c2 p2 is the new Hamiltonian.
In this coordinate system, the unperturbed particle

motion zi(0) is obtained as

x(0) =
ca0

ω
cos η − ca0

ω
+ x0, (5)

y(0) = 0, (6)

z(0) =
ca2

0

4ω

(
η − 1

2
sin 2η

)
, (7)

p(0)
x = −mca0 sin η, (8)

p(0)
y = 0, (9)

p(0)
z =

mca2
0

4
(1 − cos 2η) , (10)

under the initial condition (x0, p0) = (x0, 0, 0, 0, 0, 0) at
η = 0. Here, a0 ≡ qA0(x0)/mc2 denotes the normal-
ized laser amplitude. As is well known, the particle ex-
hibits a figure-eight motion drifting in the direction of
the laser propagation with momentum mca2

0/4 [8]. p(0)
z

in Eq. (10) can also be expressed as p(0)
z = mc(γ(0) − 1),

where γ(0)
(
=

√
1 + (p(0)/mc)2

)
is the relativistic factor of

the zeroth-order.
To investigate the secular motion originating from the

gradient of the laser field, we transform the coordinate zμ

(Eq. (3)) to that of the oscillation-center Zμ drifting with
the momentum p = êzmca2

0/4, where the relationship be-
tween the old and new coordinates is given by zi = Zi+zi(0).

Then, the new coordinate and the corresponding covariant
vector are obtained as

Zμ = (η; X,Y,Z,U,V,W), (11)

Γμ =
(
− κ; U + mc(a0(x) − a0) sin η,V,

W +
mca2

0

4
(1 − cos 2η) − kK, 0, 0, 0

)
(12)

with a0(x) ≡ qA0(x)/mc2. Here, κ = K−γ1∂x/∂η−γ3∂z/∂η
is the new Hamiltonian calculated using the relation be-
tween Eqs. (3) and (11), which yields

κ = K +
ca0

ω

[ (
U + p(0)

x + mca0(x) sin η
)

sin η

− a0

4

(
W + p(0)

z − kK
)

(1 − cos 2η)
]
. (13)

Note that the argument in Eqs. (12) and (13) is expressed
by Zμ, e.g., x = x(η, X). On the basis of these coordinate
and covariant vector, we perform a perturbation analysis
based on the expansion, Eq. (1). In the zeroth order, a0(x)
in Eqs. (12) and (13) becomes a0. The zeroth-order solu-
tion is then obtained as Z(0)i = (0, 0, 0, 0, 0, 0).

To analyze the first-order motion by using the Lie
perturbation method, we transform the coordinate to a
new one, Z′μ, in which the first-order covariant vector
can be simplified as Γ′(1)

μ =
(〈

V (0)μΓ(1)
μ

〉
; 0, 0

)
,where〈

V (0)μΓ(1)
μ

〉
= −λa2

0mc(X′ − ca0/ω)/4πL. Here, V (0)μ is the

unperturbed flow vector defined by V (0)0 = 1, V (0)i(Zμ) =
dZ(0)i/dZ0. Then, the new covariant vector up to the first
order is obtained by Γ′μ = Γ

(0)
μ + εΓ

′(1)
μ . The oscillation-

center equations of the motion up to the first order are ob-
tained as follows:

dX′

dη
=

P′

mω
, (14)

dU′

dη
= −ε λ

2πL

a2
0

2
mc, (15)

dV ′

dη
= 0, (16)

dW ′

dη
= mc

dγ′

dη
− a2

0

2
mc sin 2η, (17)

where X′ = (X′,Y ′,Z′), P′ = (U′,V ′,W ′), and γ′ is the
relativistic factor obtained from the momenta up to the first

order, i.e., γ′ =
√

1 +
[
(P′ + p(0))/mc

]2. Equation (15) ex-
presses the ponderomotive force that is proportional to the
first derivative of the laser amplitude. Note that since we
have chosen not the time t but the phase η as the indepen-
dent variable, ω/γ′ (= dη/dt) is multiplied with respect to
Eq. (15) to obtain the conventional expression for the pon-
deromotive force [3,4]. It is also noted that the influence of
the ponderomotive force in the z-direction can be seen in
Eq. (17) in the term proportional to dγ′/dη. Equation (17)
can be solved using the solutions of U′ and V ′ as

W ′ = ε
λ

2πL

a3
0

2
mcη sin η, (18)
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which represents the oscillation term, but its amplitude sec-
ularly grows in the direction of the laser propagation. This
is ascribed to the u × B effect caused by the interaction be-
tween the secular motion due to the ponderomotive force
(Eq. (15)) and the background oscillating laser magnetic
field. This may play an important role, especially in the
highly relativistic regime because this term is proportional
to a3

0.
The solutions for the initial oscillation-center coordi-

nate, Eq. (11), are obtained from the backward transforma-
tion Zμ = Z′μ − εg(1)μ, where g(1)μ is the first-order genera-
tor of the Lie transformation [5]. For instance, the longitu-
dinal momentum W is given as

W=W ′−ε λ
2πL

a3
0

2
mc

[
1− cos 2η−1

4
(cos η− cos 3η)

]
. (19)

The second and third terms on the right-hand side of
Eq. (19) correspond to the reduction in the zeroth-order
longitudinal velocity. This reduction originates from the
fact that the particle feels a weaker field on average dur-
ing one cycle of the oscillations than it would in a uniform
field. This result is consistent with that obtained by ap-
plying the perturbation analysis directly to the equation of
motion derived from Eqs. (3) and (4). However, such an
approach does not keep the Hamiltonian structure which
is rigorously kept in the present analysis. In this case,
the general theorems of Hamiltonian mechanics can be ap-
plied.

In conclusion, we have derived the equation system
describing the relativistic pondromotive force and the re-
lated particle dynamics due to a transversely localized laser

field up to the order ε ∼ λ/L. We found that the recoil of
the ponderomotive force was included in the same order
ε in the direction of the laser propagation and was rep-
resented as a secular term exhibiting a growing oscilla-
tion with a cubic dependence on the normalized amplitude.
This perturbation expansion is valid for εa0 < O(1). The
remarkable feature of the present noncanonical Lie pertur-
bation analysis is the systematic and rigorous determina-
tion of the higher-order terms. Here, we have only derived
terms up to the first order, but it can be extended to the
second order which may include the curvature effect of the
laser field.
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