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A new Monte Carlo code based on particle tracing using real coordinates has been developed to properly
treat the re-entering particles that repeatedly pass in and out of the last closed flux surface (LCFS). The particle
loss due to the charge-exchange reaction has also been taken into account in this code. We apply this new code
to the analysis of high-energy particles produced by tangential neutral beams (NBs) of the large helical device
(LHD). It is confirmed that reasonable solutions of distribution functions are obtained for particles produced by
the tangential-NBs. It is also confirmed that the effect of the particle orbit and the charge-exchange loss on the
distribution function is properly included. The shapes of the distribution functions of particles, produced by
the tangential-NBs in two temperature cases (1 keV and 0.1 keV), are the same. It is found that the re-entering
particles play an important role in the analyses of the distribution function of particles produced by the NBs.
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1. Introduction
Three tangential neutral beam (NB) injectors and a

perpendicular-NB injector have been installed on the large
helical device (LHD) [1]. A volume-averaged beta, 〈β〉,
reached 5% in recent LHD experiments using these NBs
[2]. In the high-beta plasma of the LHD, the typical
operational magnetic field strength is low, and the typi-
cal high-beta discharges are operated under the relatively
low density because the so-called density limit decreases
as the magnetic field strength decreases [3]. The beta
value achieved increases with a decrease in magnetic field
strength. On the other hand, the increase in the stored en-
ergy of the high-energy particles due to the decrease in op-
erational density is superior to the degradation of confine-
ment of the high-energy particles caused by the decrease in
magnetic field strength. The ratio of the beam pressure to
the total plasma pressure is relatively high. Here, the beam
pressure is the pressure caused by the high-energy particles
produced by the NBs. Because it has been pointed out that
the beam pressure and/or the pressure anisotropy signifi-
cantly affects the properties of MHD equilibrium and sta-
bility [4–6], it is important to identify the beam-pressure in
the total plasma pressure.

To calculate the beam pressure, we need to know the
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distribution function of the high-energy particles produced
by the NBs. The distribution function can be obtained by
a Monte Carlo simulation based on high-energy particle
tracing. The conventional Monte Carlo simulation stud-
ies for the LHD have been performed with the use of the
Boozer coordinates [7, 8]. On the LHD high beta study
based on the above method, the particle-loss boundary is
set on the last closed flux surface (LCFS) in the particle
tracing. Therefore, once having passed out of the LCFS,
the particles are regarded as lost particles. As a result, the
particle loss is overestimated in such analyses.

On the other hand, the authors have performed par-
ticle orbit analyses using the real coordinates, where the
particle-loss boundary is set on the vacuum vessel wall [9].
In these analyses, it has been shown that the re-entering
particles [10, 11] that repeatedly pass in and out of the
LCFS, exist in both the vacuum magnetic field and the
finite-beta plasma. It has been pointed out that the role of
the re-entering particles in the high-energy particle behav-
ior in a finite-beta plasma and/or a low-strength magnetic
field is more important than that in the vacuum magnetic
field.

In this paper, we develop a new Monte Carlo code
based on particle tracing with the use of real coordinates.
As a code based on a similar concept, the orbit-following
Monte Carlo (OFMC) code [12] was developed for JT-
60U experimental analyses. In the developed code, as the
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particle-loss boundary is set on the vacuum vessel wall
the re-entering particles can be traced properly. The re-
entering particles repeatedly pass through the outer region
of the LCFS, where the neutral particle density is higher
than that in the core. Consequently, the re-entering parti-
cles might be lost because of the charge-exchange reaction
with the neutral particles. Considering this fact, the parti-
cle loss due to the charge-exchange reaction is included in
the developed code.

We apply this code to the high-energy particles pro-
duced by the tangential-NBs of the LHD in the vacuum
magnetic field. The difference in the distribution func-
tion caused by the change in temperature of back ground
plasma is also investigated. We also study the effects of the
charge-exchange reaction as well as the re-entering parti-
cles on the distribution functions.

This paper is organized as follows. The outline of the
developed Monte Carlo code is summarized in Sec. 2. The
application results of the Monte Carlo code to the high-
energy particles produced by the tangential-NBs are pre-
sented in Sec. 3. The conclusion is presented in Sec. 4.

2. Developed Monte Carlo Code
2.1 Outline to calculate the distribution

function

To analyze the distribution function of the high-energy
particles that are peculiar to the LHD as a helical device,
we have developed a new Monte Carlo code. The outline
of this code is explained as follows.

This code calculates the steady-state solution of the
drift-kinetic equation through particle tracing. To trace
the high-energy particles, guiding-center equations are nu-
merically solved in real coordinates. Coulomb collision is
taken into account using the Monte Carlo collision opera-
tor [13] described in Sec. 2.2. The particle-loss boundary is
set on the vacuum vessel wall instead of the LCFS to trace
the re-entering particles properly. In this paper, the parti-
cle reaching the vacuum vessel wall or making the charge-
exchange reaction is regarded as a lost particle. The treat-
ment of the charge-exchange loss is explained in Sec. 2.3.
We use the 6th-order Runge-Kutta formulas [14] and the
3D higher order spline function [15] in the particle tracing
calculation.

Each Monte Carlo particle with a weight W =

S 0/N total
cal is traced until it is either thermalized or lost.

Here, N total
cal is the total number of traced Monte Carlo par-

ticles and S 0 = PNB/ENB denotes the number of high-
energy charged particles produced by NBs per unit time.
PNB is the injected power by NBs and ENB the energy of a
high-energy charged particle produced by NB. Note that
the number distribution of the high-energy particle pro-
duced by NB shows Nbirth(rinitial) = W × Ncal(rinitial), where
rinitial is the position of an initial point of a Monte Carlo
particle and Ncal is the number of Monte Carlo particle
traced from each initial points, N total

cal =
∑

Ncal(rinitial). In

this code, the thermalized particle is defined as the particle
whose velocity has become less than three times vTb be-
cause of the Coulomb collision. Here, vTb

(
=
√

Tb/mb

)
is

the thermal velocity of the back ground particle. As a result
of particle tracing, we obtain the time Δt(r, θ, ϕ, v, χ) that a
Monte Carlo particle spends in a small volume in phase
space, as ΔV(r, θ, ϕ, v, χ) = RaxrΔrΔθΔϕ2πv2sin(χ)ΔvΔχ .
Then, the distribution function is approximately given by

f (r, θ, ϕ, v, χ) =
1

ΔV(r, θ, ϕ, v, χ)

N total
cal∑

i=1

Wi

×Δti(r, θ, ϕ, v, χ), (1)

where r denotes the minor radius, θ and ϕ are the poloidal
and toroidal angles, respectively, and χ the pitch angle.
Here, Rax is the major radius at the magnetic axis. The
pressure and some other quantities can be calculated from
the obtained distribution function.

2.2 Collision operator
The following Coulomb collision operator [13] is in-

troduced in the developed code. In this model, the test
particle is assumed to continuously collide with the back-
ground Maxwellian plasma. Based on mean values and
mean square deviations of the velocity variation due to col-
lision, the velocity variation (Δvv, Δvχ, Δvη) is added to
the velocity of the test particle after each small time step
δt. Here, χ is the pitch angle, while η corresponds to the
gyro-phase.

A test particle (subscript “t”) collides with back-
ground particles (subscript “b”). Provided that the back-
ground particles have a Maxwellian velocity distribution
with temperature Tb, the mean values and mean square de-
viations of the test particle during δt are given by [16]

〈(
Δvt/b

v

)2
〉
=
Γt/b

2v

[
erf(u)

u2
− erf′(u)

u

]
2δt, (2)

〈
Δvt/b

v

〉
= −

(
1 +

mt

mb

)
Γt/b

v2

(
erf(u) − uerf′(u)

)
δt, (3)

〈(
Δvt/b

χ

)2
〉
=

〈(
Δvt/b

η

)2
〉
=
Γt/b

4v

[(
2− 1

u2

)
erf(u)+

erf′(u)
u

]
2δt,

(4)

and 〈
Δvt/b

χ

〉
=

〈
Δvt/b

η

〉
= 0, (5)

where u = v/
(√

2vTb

)
. Here, erf(u) =

(
2/
√
π
) ∫ u

0

exp(−x2) dx is the error function and erf′(u) =(
2/
√
π
)

exp(−u2) the differentiated error function. Γt/b =

nbq2
t q2

blnΛt/b/
(
4πε2

0 m2
t

)
, where qa, ma and na are the elec-

tric charge, mass, and density of species “a”, respectively.
ε0 is the dielectric constant in vacuum. The Coulomb log-
arithm lnΛt/b is given in the NRL Plasma Formulary [17].

A set of (Δvv, Δvχ, Δvη) is computed using normal
random numbers with Eqs. (2)-(5). As a result, the velocity
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Fig. 1 Initial points of Monte Carlo particles on the equatorial plane in the LHD. Square marks are the initial points in counter-NB case
and crosses are the initial points in co-NB case.

(
v‖, v⊥

)
changes to

v′‖ = v‖ + Δv
t/b
v

v‖
v
− Δvt/b

χ

v⊥
v
, (6)

and

v′⊥ =
[(
v⊥ + Δvt/b

v

v⊥
v
+ Δvt/b

χ

v‖
v

)2
+

(
Δvt/b

η

)2
] 1

2

, (7)

during δt by collisions, respectively.

2.3 Charge-exchange loss
As mentioned above, in order to investigate the effect

of the re-entering particle on the distribution function, it is
important to deal with the charge-exchange loss. In this
paper, the charge-exchange reaction is modeled as follows
[18].

The probability of the charge-exchange reaction dur-
ing δt is expressed as nn 〈σ〉cx vδt when a high-energy
charged particle passes through the space with neutral par-
ticle density nn. Here, 〈σ〉cx is the reaction cross-section
for charge-exchange reaction. The probability is integrated
along the charged particle orbit as I =

∫
nn 〈σ〉cx v dt, un-

til I = ln (1/α). In other words, the high-energy charged
particle is lost because of the charge-exchange reaction
when I = ln (1/α), where α is a random number such that
0 < α < 1. In this paper, it is assumed that neutral particles
exist only outside the LCFS with nn = const. Therefore,
the charge-exchange also reacts only outside the LCFS.

3. Computational Results Obtained
by the Developed Code

3.1 Calculation conditions
We apply the new Monte Carlo code to the high-

energy particles produced by the tangential-NBs (BL-1 and
BL-2) in the LHD. Note that the injecting direction of BL-
1 is opposite to that of BL-2. Although each NB injector

has two beam lines, the initial points of the Monte Carlo
particles are assumed to be set on a line between these two
beam lines for simplicity. As shown in Fig. 1, we set 21 ini-
tial points on the line inside the LCFS in each NB [19]. The
initial points expressed in the normalized minor radius, ρ,
are evenly spaced apart (Δρ 	 0.04). Here, ρ =

√
ψ/ψLCFS,

ψLCFS is the toroidal magnetic flux at the LCFS. The num-
ber of Monte Carlo particles traced from each initial point
is 1,000 and W of each Monte Carlo particle is the same for
simplicity. As a result, the number of high-energy particles
produced by the NB is uniform in terms of ρ and the birth
profile of the high-energy particles produced by the NB is
in inverse proportion to ρ2. The initial energy (E0) of the
particles is assumed to be 180 keV, which corresponds to
a typical value of the operational beam energy. The direc-
tion of the initial velocity of the particle corresponds to the
direction of the beam line. The other conditions used in
this paper are shown in Table 1. The background plasma is
assumed to consist of a proton and an electron, and impu-
rity ions are ignored. The temperature and density of the
background plasma are assumed to be constant throughout
the region inside the vacuum vessel wall.

3.2 Distribution function of particles
In each component of the phase space (ρ, v, χ), the

distribution function is given by

Fv(v) ≡
∫∫∫∫

f (ρ, θ, φ, v, χ)Raxρsin(χ)dρdθdϕdχ,

(8)

Fρ(ρ) ≡
∫∫∫∫

f (ρ, θ, φ, v, χ)2πv2sin(χ)dθdϕdvdχ,

(9)

and

Fχ(χ) ≡
∫∫∫∫

f (ρ, θ, φ, v, χ)Raxρ2πv2dθdϕdv, (10)
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Table 1 Calculation conditions
Magnetic field

β 0% (vacuum)
Field strength on the magnetic axis (Bax) 3 T
Major radius on the magnetic axis (Rax) 3.6 m

Background
species hydrogen

ion temperature Tbi 1.0 keV
density nbi 1020 m−3

electron temperature Tbe 1.0 keV
density nbe 1020 m−3

Neutral Beams
injected power counter 1 MW

co 1 MW

Fig. 2 Distribution functions in the velocity space are shown by the solid lines: (a) shows counter-NB case and (b) co-NB case. The
analytical steady-state solution of the Fokker-Plank equation is drawn as reference (dashed line). Note that Fv(v) in the two cases
is shown in the same unit. Calculation conditions are shown in Table 1.

respectively. Note that here, owing to the above definition,
Fρ(ρ) corresponds to the density profile.

The solid line in Fig. 2 shows the Fv(v) calculated by
Eq. (8). It should be noted that the units are the same in
Figs. 2 (a) and (b). In Fig. 2, the Fv(v) (solid line) is in
agreement with the analytical steady-state solution of the
Fokker-Planck equation (dashed line) [20]. This result im-
plies that the energy-relaxation process of the high-energy
particles is successfully calculated. The peak value of Fv(v)
in the case of counter-NB is slightly smaller than that in
the case of co-NB. This difference is attributed to the dif-
ference in the number of lost particles in the two injection
cases. Although there are few lost particles traced from
ρ 	 1.0 in the case of co-NB, most of the particles traced
from ρ 	 1.0 are lost in the case of counter-NB.

Figure 3 shows the Fρ(ρ) cause using Eq. (9). In
Fig. 3, the solid and dashed lines are the Fρ(ρ) calcu-
lated with and without tracing particles, respectively. In
counter-NB case (Fig. 3 (a)), clear differences between the
two Fρ(ρ)s with and without tracing particles in ρ < 0.3
and ρ > 0.8 can be seen. These differences are attributed

to the effect of the particle orbit on Fρ(ρ). The difference
in ρ < 0.3 shows that the particle produced by counter-NB
tends to move in the outer region of the flux surface on
which its initial point is set. The difference in ρ > 0.8 is
due to the orbit loss. On the other hand, in 0.3 < ρ < 0.8,
Fρ(ρ) is almost the same as Fρ(ρ) calculated without trac-
ing particles. Most of the particles produced by tangential-
NBs are passing particles. Additionally, in the applied cal-
culation condition, the deviation of each passing particle
orbit from the flux surface is small and almost the same.
Therefore, in 0.3 < ρ < 0.8, the particle orbit has little
effect on Fρ(ρ). Also in the case of counter-NB, there are
clear differences between the two Fρ(ρ)s with and without
tracing particles in ρ < 0.3 and ρ > 0.8 in co-NB case
(Fig. 3 (b)). These differences in co-NB case are because
particles produced by co-NB tend to move in the inner re-
gion of the flux surface on which their initial points are
set.

Figure 4 shows the Fχ(χ) calculated using Eq. (10). In
counter-NB case (Fig. 4 (a)), Fχ(χ) peaks only at χ 	 π

and the half-width of Fχ(χ) at the half-maximum is about
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Fig. 3 Distribution functions in the ρ space are shown by the solid lines: (a) shows counter-NB case and (b) co-NB case. The distribution
function calculated without tracing particles is shown as a reference (dashed line). Calculation conditions are shown in Table 1.

Fig. 4 Distribution functions in the χ space are shown by the solid lines: (a) shows counter-NB case and (b) co-NB case. The distribution
function calculated without tracing particles is shown as a reference (dashed line). Calculation conditions are shown in Table 1.

0.2π. Additionally, in χ < 0.6π, Fχ(χ) 	 0. In contrast, in
the case of co-NB, Fχ(χ) has maximum value when χ 	 0
and Fχ(χ) 	 0 in χ > 0.4π. The half-width of Fχ(χ) at the
half-maximum is about 0.2π, which is the same as that in
counter-NB case. These results imply that the influence of
pitch-angle scattering on the distribution function is small.

3.3 Beam pressure estimated from obtained
distribution functions

We estimate the beam pressure from the distribution
functions obtained. The parallel and perpendicular beam
pressures are given by

P‖(ρ) ≡ 2
∫∫∫∫

1
2

mv2cos2(χ) f (ρ, θ, φ, v, χ)

× 2πv2sin(χ)dθdϕdvdχ, (11)

and

P⊥(ρ) ≡
∫∫∫∫

1
2

mv2sin2(χ) f (ρ, θ, φ, v, χ)

× 2πv2sin(χ)dθdϕdvdχ, (12)

respectively. Figure 5 shows P‖ and P⊥. Note that the
injected power of NB is assumed to be 1 MW.

In Figs. 5 (a) and (b), there are clear differences be-
tween the two P‖s with and without tracing particles in
ρ < 0.3 and ρ > 0.8. Additionally, the shapes of P‖ are
almost the same as those of Fρ(ρ), as shown in Fig. 3. In
Figs. 5 (c) and (d), there also exist clear differences be-
tween the two P⊥s with and without tracing particles in
0.3 < ρ < 0.8. In other words, the particle orbit has an ef-
fect on P⊥ independent of ρ in the tangential-NB case. The
scale of P⊥ is less than one twentieth of the scale of P‖.
In order to ascertain the validity of these results, we need
to compare the new code results with the experimental re-
sults. We have a plan to analyze the distribution function
of the NBs with the use of conditions much closer to those
used in the actual LHD experiments.

3.4 Effect of back ground plasma on the dis-
tribution function

In order to investigate the effect of back ground tem-
perature on the distribution function, we compare the dis-
tribution function in Tb = 0.1 keV with that of Tb = 1 keV.
Figure 6 shows the distribution functions normalized by
W × Ncal × 〈τrel〉 in counter-NB case, where 〈τrel〉 is the
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Fig. 5 Beam pressures (P‖ and P⊥) obtained by the developed code are shown by the solid lines: (a) shows P‖ in counter-NB case. (b)
shows P‖ in co-NB case, (c) shows P⊥ in counter-NB case and (d) shows P⊥ in co-NB case. The beam pressure calculated without
tracing particles is shown for reference (dashed line). Calculation conditions are shown in Table 1.

Fig. 6 Distribution functions of the particles produced by counter-NB in the Tb = 1 keV and Tb = 0.1 keV cases are shown by the solid
and the dashed lines, respectively: (a) shows Fρ(ρ) and (b) shows Fχ(χ). Calculation conditions are shown in Table 1.

average relaxation time of Monte Carlo particles.
In Fig. 6 (a), there is no significant difference in the

shapes of Fρ(ρ) between the two Tb cases. Additionally,
in Fig. 6 (b), the half-width of Fχ(χ) at half-maximum in
Tb = 0.1 keV is almost the same as that in the case where
Tb = 1 keV. When the critical energy (Ec) is more than
the energy of the particles (E), the effect of pitch-angle
scattering is large. Because Ec 	 14.8 keV (Tb = 1 keV)
and Ec 	 1.48 keV (Tb = 0.1 keV) in the conditions used,

E0 � Ec. Additionally, during the calculation, the period
in which E > Ec is much longer than the period in which
E ≤ Ec. Therefore, pitch-angle scattering has little effect
on the distribution function in the two Tb cases. As a result,
the shapes of the distribution functions in the two Tb cases
are almost the same.
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Fig. 7 Distribution functions in v and χ spaces considering the charge-exchange reaction for the cases with nH = 0 (solid line), nH =

1018 m−3 (dash-dotted line) and nH = ∞ (dashed line): (a) shows Fv(v) in counter-NB case, (b) Fv(v) in co-NB case, (c) Fχ(χ) in
counter-NB case, and (d) Fχ(χ) in co-NB case. Calculation conditions are shown in Table 1.

3.5 Effect of the charge-exchange loss on the
distribution function

In this paper, we assume that the charge-exchange loss
occurs only with hydrogen atoms and that the density of
the hydrogen atoms (nH) is uniform outside the LCFS and
nH = 0 inside the LCFS.

Figure 7 shows Fv(v) and Fχ(χ) in the nH = 0, nH =

1018 m−3, and nH = ∞ cases. In Fig. 7, the solid line de-
notes the nH = 0 case without charge-exchange loss. The
dashed line represents the nH = ∞ case, in which all the
re-entering particles are regarded as lost particles. The
dashed-dotted line denotes nH = 1018 m−3 case. This value
is estimated by the degree of vacuum obtained in the LHD
experiments.

In Figs. 7 (a) and (b), there is no significant difference
in Fv(v) between the nH = 0 and nH = ∞ cases. Therefore,
the charge-exchange reaction has a small effect on Fv(v) of
high-energy particles produced by the tangential-NB with
Bax = 3 T. Similarly, in Figs. 7 (c) and (d), the charge-
exchange loss hardly affects Fχ(χ) of the high-energy par-
ticles produced by the tangential-NB.

Figure 8 shows Fρ(ρ) in the nH = 0, nH = 1018 m−3,
and nH = ∞ cases. The difference in Fρ(ρ) between nH = 0
(solid line) and nH = 1018 m−3 (dashed-dotted line) is
remarkable only in ρ 	 1.0. Therefore, in the case of
tangential-NB with Bax = 3 T, the charge-exchange loss

has an effect on the distribution function in the vicinity
of the LCFS. This is not only because most of the parti-
cles produced by the tangential-NB are passing particles,
but also because the deviation of the passing particle orbit
from the flux surface on which its initial point is set is rel-
atively small when Bax = 3 T. Therefore, under the present
calculation condition, only particles traced from the ini-
tial points near the LCFS are lost because of the charge-
exchange reaction. In Fig. 8, there is also a clear differ-
ence in the distribution function between nH = 1018 m−3

(dashed-dotted line) and nH = ∞ (dashed line) in ρ ∼ 1.
This result implies that it is important to take the re-
entering particles into account correctly in the analyses of
the distribution function even in the case of tangential-NB
with Bax = 3 T.

3.6 Distribution function in the finite-beta
plasma of the LHD

As mentioned in Sec. 1, the role of the re-entering par-
ticles in the the high-energy particle behavior in the finite-
beta plasma and/or the low-strength magnetic field may be
more important than that in the vacuum magnetic field.
The new Monte Carlo code is applied to the high-energy
particles produced by the tangential-NBs in the finite-beta
plasma of the LHD. The finite-beta equilibrium magnetic
field (〈β〉 = 2.7%, Bax = 0.5 T) used is calculated using the
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Fig. 8 Distribution functions in ρ spaces considering the charge-exchange reaction for the cases with nH = 0 (solid line): nH = 1018 m−3

(dash-dotted line) and nH = ∞ (dashed line). (a) shows counter-NB case and (b) co-NB case. Calculation conditions are shown in
Table 1.

Fig. 9 Distribution functions in the finite-beta plasma of the LHD for the cases with nH = 0 (solid line), nH = 1018 m−3 (dash-dotted line),
and nH = ∞ (dashed line): (a) shows counter-NB case and (b) co-NB case. Calculation conditions are the same as Fig. 8, except
for the magnetic field strength (Bax = 0.5 T) and the volume averaged beta (〈β〉 = 2.7%).

HINT code [21, 22]. Bax = 0.5 T is almost the same as the
magnetic field strength used in the high-beta experiments
of the LHD [2]. In 〈β〉 = 2.7%, the magnetic axis is located
more torus-outwardly (Rax 	 3.9 m). The initial conditions
of particles produced by the tangential-NBs and the back-
ground plasma are the same as that mentioned in Sec. 3.1.
According to the previous study [9], the finite-beta equi-
librium magnetic field with 〈β〉 = 2.7% and Bax = 0.5 T
has significantly worse properties of high-energy particle
confinement compared with the vacuum magnetic field at
Bax = 3 T.

Figure 9 shows Fρ(ρ) in the finite-beta plasma of the
LHD. In Figs. 9 (a) and (b), there is a significant differ-
ence between nH = 0 and nH = ∞ in 0 < ρ < 1 as well
as ρ 	 1. This result shows that there exit the re-entering
particles around the magnetic axis. This is because the par-
ticles produced by the tangential-NBs deviate significantly
from the flux surface on which its initial point is set in the
case of Bax = 0.5 T.

In the nH = 1018 m−3 case, clear differences between
counter-NB case (Fig. 9 (a)) and co-NB case (Fig. 9 (b))

can be seen. In co-NB case, the distribution function in
nH = 1018 m−3 is larger than that in nH = ∞ in 0 < ρ < 1
as well as ρ 	 1. The effect of the re-entering parti-
cles on the distribution function is about 5% at ρ = 0.1.
On the other hand, the distribution function when nH =

1018 m−3 is almost the same as that when the nH = ∞ in
counter-NB case. This result implies that the effect of the
charge-exchange loss on the re-entering particles is larger
in counter-NB case. This is because the particle produced
by counter-NB in torus-outside tends to move in the outer
region of the flux surface on which its initial point is set
and because their path lengths outside LCFS have a ten-
dency to be longer. These results imply that the charge-
exchange loss plays an important role in the confinement
of re-entering particles.

The effect of the charge-exchange loss on the distribu-
tion function of the high-energy particles depends not only
on the neutral density profile but also on the background
plasma. We will investigate the effect of the re-entering
particles as well as the charge-exchange loss in the distri-
bution function of the NBs with conditions much closer to
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those used in the actual LHD experiments.

4. Conclusion
We have developed a new Monte Carlo code based on

particle tracing with the use of the real coordinates to trace
the re-entering particles properly. The particle loss due to
the charge-exchange reaction has been taken into account
in this code. This new code has been applied to the analy-
sis of the high-energy particles produced by the tangential-
NBs of the LHD. The distribution functions have been in-
vestigated in the vacuum magnetic field with Bax = 3 T and
in the finite-beta plasma (〈β〉 = 2.7%) with Bax = 0.5 T.
We have found the following information.

We have confirmed that reasonable distribution func-
tions can be obtained by the code we have developed in
the vacuum magnetic field with Bax = 3 T. The energy re-
laxation process of high-energy particles can be analyzed
successfully using the developed code, so that reasonable
solutions of distribution functions are obtained for parti-
cles produced by the tangential-NBs. It is confirmed that
the effect of the particle orbit and the charge-exchange loss
on the distribution function is properly included.

We have studied the difference in the obtained distri-
bution function caused by the difference in temperature of
the back ground plasma in the vacuum magnetic field with
Bax = 3 T. The shapes of the distribution function in the
two temperature cases are found to be almost the same.

We have also investigated the effect of the charge-
exchange loss and the re-entering particle on the distri-
bution function in the vacuum magnetic field with Bax =

3 T and in the finite-beta plasma with Bax = 0.5 T. In the
vacuum magnetic field with Bax = 3 T, the effect of the re-
entering particle is found in the vicinity of the LCFS. On
the other hand, the re-entering particles have an effect on
the distribution function around the magnetic axis as well
as in the vicinity of the LCFS in the finite-beta plasma
with Bax = 0.5 T. It is also found that the effect of the
charge-exchange loss on the distribution function depends
on whether the re-entering particles are regarded as lost
particles. It is found that it is important to treat the re-

entering particles correctly in the analyses of the distribu-
tion function of particles produced by the NBs, particularly
in the finite-beta plasma with Bax = 0.5 T.
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