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MHD Instabilities in Current Carrying Heliotron Plasmas
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Instabilities in low beta l = 2 heliotron plasmas with peaked toroidal current density profiles are investigated
using resistive reduced magnetohydrodynamic equations. Such heliotron plasmas can have a nonmonotonic
rotational transform ῑ profile with two ῑ = 2/3 rational surfaces. When the distance between the resonant surfaces
is large, resistive instabilities can be found. Current-driven ideal modes with larger growth rates appear when
the minimum of the rotational transform becomes just above the rational number 2/3 and there is no resonant
surface. The existence of this non-resonant mode is explained by the expression for the current-driven term of
the plasma potential energy.
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1. Introduction
In heliotron devices, no net toroidal current is nec-

essary for magnetohydrodynamics (MHD) equilibrium.
However, net toroidal currents are observed in experiments
in the Large Helical Device (LHD) [1]. Non-inductive cur-
rents, such as beam driven and bootstrap currents, are be-
lieved to contribute to the observed net currents. It is not
clear whether currentless plasmas are more favorable for
confinement and whether they are realized in the next gen-
eration devices to confine fusion-graded plasma. There-
fore, it is worthwhile to investigate heliotron plasmas with
toroidal current.

Three different types of flux-averaged current density
〈Jtor〉 profile in low beta LHD-like plasma and the corre-
sponding rotational transform ῑ profiles are shown in Fig. 1.
In the case of the peaked current density profile, the rota-
tional transform profile becomes a nonmonotonic function
due to the large poloidal magnetic field near the center.

MHD instabilities in current-carrying pressureless
plasma have been investigated in straight stellarator
plasma [2, 3]. They produced stability diagrams with re-
spect to plasma and helical coil currents for kink and tear-
ing modes for various current profiles and helical fields. It
was shown later that the stability diagram obtained by cal-
culations including toroidal effect is essentially the same
as that given for straight cylindrical plasma [4]. The mode
structures of m = 1, n = 1 (m and n are the poloidal
and toroidal mode numbers, respectively) current-driven
ideal modes were examined for resonant and non-resonant
modes using heliotron E configurations in which the ῑ pro-
file is nonmonotonic and its value at the center is above
unity. The plasma displacement of the non-resonant mode
was found to have a broad profile in the radial direction,
unlike the usual internal kink mode. It is also interesting
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to consider localized modes for configurations where the ῑ
profile is nonmonotonic and its value at the center is below
unity. In such configurations m = 1, n = 1 internal kink
modes do not appear.

In the present work, we consider low beta LHD-like
plasmas with peaked current density profiles in terms of
growth rates and eigenfunctions taking account of resistiv-
ity. We explore how a resonant localized mode changes as
the distance between the rational surfaces becomes small
and how non-resonant modes behave when there is no ra-
tional surface. Numerical simulations based on reduced
resistive magnetohydrodynamic equations are carried out
for this purpose.

2. Model
The reduced set of magnetohydrodynamic (RMHD)

equations for heliotron plasmas [5] is used for the stability
analysis. It is based on large aspect ratio ordering. We de-
fine (x, y, z) coordinates as x = R − Rc, y = Z, z = −Rcϕ,
where (R, ϕ,Z) are the cylindrical coordinates and Rc is
the major radius of the plasma center. The time evolu-
tion of the system is described by a poloidal flux related to
plasma current RcA(x, y, z, t), a stream function φ(x, y, z, t),
and plasma pressure p(x, y, z, t), where

B = ∇(ψh + A) × ẑ + f∗ ẑ, (1)

and

u = ∇φ × ẑ, (2)

and Rcψh(x, y) is a lowest order poloidal flux generated by
helical coil current and f∗(x, y) is a toroidal magnetic field.
Here, B and u represent an effective magnetic field and
lowest-order fluid velocity, respectively. Unlike the usual
RMHD equations, in which the toroidal magnetic field f∗
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Fig. 1 (a) Averaged current density and (b) rotational transform as a function of averaged minor radius 〈r〉 in the low-beta LHD-like
configuration. Solid line shows the profile for currentless case. Dashed and dotted lines correspond to the cases of rounded and
peaked current density profiles, respectively, with the same total current value.

is uniform in space, we keep f∗ as a flux function to repro-
duce the same rotational transform profile as in the three
dimensional MHD equilibrium. A, φ, and p obey the equa-
tions

ρ0
∂

∂t

(
∇2
⊥φ

)
= ρ0

[
φ,∇2

⊥φ
]
+

[
∇2
⊥A, A + ψh

]

+ f∗
∂

∂z

(
∇2
⊥A

)
+

[
Ω, p

]
, (3)

∂A
∂t
=

[
φ, A + ψh

]
+ f∗

∂φ

∂z
+ η∇2

⊥A, (4)

∂p
∂t
=

[
φ, p

]
. (5)

Here, density ρ0 and resistivity η are assumed to be con-
stant. Ω(x, y) represents a potential function of averaged
magnetic curvature. The Poisson bracket is defined as[
f , g

]
= (∂ f /∂x)(∂g/∂y) − (∂ f /∂y)(∂g/∂x), and the Lapla-

cian as ∇2⊥ f = ∂2 f /∂x2 + ∂2 f /∂y2.
In the present treatment, we consider only the linear

development of the system. Linearizing Eqs. (3)-(5) yields
the following set of equations for perturbed variables Ã, φ̃,
and p̃:

ρ0
∂

∂t

(
∇2
⊥φ̃

)
=

[
∇2
⊥Ã, ψeq

]
+ f∗

∂

∂z

(
∇2
⊥Ã

)
−

[
Jeq, Ã

]

+
[
Ω, p̃

]
, (6)

∂Ã
∂t
=

[
φ̃, ψeq

]
+ f∗

∂φ̃

∂z
+ η∇2

⊥Ã, (7)

∂ p̃
∂t
=

[
φ̃, peq

]
, (8)

where Aeq and peq are equilibrium quantities, and ψeq =

Aeq + ψh, Jeq = −∇2⊥Aeq. Here, peq and f∗ are functions of
ψeq. Three-dimensional equilibrium, which is calculated
with the VMEC code [6], is toroidally averaged and the
resulting two-dimensional equilibrium is used in the linear
stability analysis. The averaged equilibrium quantities are
calculated as shown in the Appendix.

We apply an (r, θ, ζ) coordinate system for the geom-
etry considered here, where r, which labels the surface of
constant ψeq, is the averaged minor radius, and θ and ζ,

which range from 0 to 2π, correspond to the poloidal and
toroidal angles, respectively. The transformation of vari-
ables between the (r, θ, ζ) and (x, y, z) coordinate systems
can be written as

x = x(r, θ), (9)

y = y(r, θ), (10)

z = Rcζ. (11)

The poloidal angle θ is chosen such that the two-
dimensional Jacobian, J = (∂x/∂r)(∂y/∂θ) − (∂x/∂θ)
(∂y/∂r) is constant on the flux surface. In this case, a
straight line θ− ῑζ = const on the θ-ζ plane becomes a mag-
netic field line by the transformation of variables, where ῑ
is the rotational transform. In the (r, θ, ζ) coordinate sys-
tem, the Poisson bracket is written as

[
f , g

]
=

(
∂ f
∂r

∂g

∂θ
− ∂ f
∂θ

∂g

∂r

)
J−1, (12)

and the Laplacian as
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Because the equilibrium studied here has up-down symme-
try, perturbed variables can be expanded in Fourier series
of the form

Ã =
∑

m

Am(r, t) sin(mθ − nζ), (14)

φ̃ =
∑

m

φm(r, t) cos(mθ − nζ), (15)

p̃ =
∑

m

pm(r, t) sin(mθ − nζ), (16)

where m and n are the poloidal and toroidal mode numbers,
respectively.

With the use of finite difference techniques, Eqs. (6)-
(8) yield

B xn+1 − xn

Δt
= Axn, (17)

where Δt is the time step, and a vector xn represents the
values of perturbed quantities at each radial mesh point at
the time nΔt. Here,A and B are coefficient matrices made
up of equilibrium quantities. Equation (17) is related to the
eigenvalue problem

Ap = λBp, (18)

where the eigenvalue λ, corresponding to the growth rate,
and the eigenvector p, which displays the form of the mode
that grows with the growth rate λ when Eq. (17) is evolved
with time, are to be determined. In the present study, λ and
p are determined by applying the inverse power method
[7]. In this method, the iteration equation

(A− λ̂B)yn+1 = Byn, (19)

is used; λ̂ is an arbitrarily chosen value. In the limit of
n → ∞, yn is proportional to (λ0 − λ̂)−n p0, where λ0 is the
eigenvalue nearest to λ̂, and p0 is the eigenvector associ-
ated with λ0. Making use of this relation, one can evaluate
one of the eigenvalues which depends on λ̂ and its corre-
sponding eigenvector.

3. Numerical Results
3.1 Equilibria

The helical coils in the LHD consist of three layers.
As the coil current flows inward, the rotational transform
becomes higher. In this study, we choose a model config-
uration with coil current flowing only in the middle layer.
Also, the position of the vacuum-field magnetic axis is ad-
justed to R0 = 3.75 m. Vacuum magnetic flux surface is
calculated by the KMAG code and the obtained last flux
surface is used as a fixed boundary in the MHD equilib-
rium code VMEC. The pressure P(s) and net toroidal cur-
rent J(s) profiles, which are used as input to the VMEC
code, are given by

P(s) = P0(1 − s)2, (20)

J(s) = J0
[
1 − (1 − s)8], (21)

Fig. 2 Rotational transform profiles for various total currents.
Horizontal dotted line indicates ῑ = 2/3. The minimum
value of ῑ is just 2/3 for J0 = 103 kA.

Fig. 3 Contours of poloidal flux for the averaged equilibrium
with J0 = 103 kA.

with P0 and J0 constant, where s is the toroidal flux nor-
malized to its edge value. Note that the current density
profile is peaked in the center region. The central magnetic
field is B0 = 3 T, and the beta value at the magnetic axis
is β0 = 0.2 %. The total current J0 is varied in the range
of 80 kA < J0 < 130 kA. The corresponding rotational
transform profiles ῑ(r) are shown in Fig. 2. Two ῑ = 2/3
rational surfaces exist for J0 < 103 kA, and no ῑ = 2/3
surface exists for J0 > 103 kA. Figure 3 shows surfaces of
constant ψeq for J0 = 103 kA. The averaged flux surfaces
are nearly circular, and the magnetic axis is shifted slightly
outward from the center of the plasma surface. The aver-
aged radius of the outermost surface is a = 0.63 m. The
flux surfaces for the other cases are very similar to this
configuration.

3.2 Current-driven term
There is a relation for the plasma energy correspond-

ing to the RMHD model, which is expressed as
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Fig. 4 Numerical convergence of the growth rates with increasing Nr for (a) n = 2 and (b) n = 4 modes. The results shown correspond to
the LHD-like equilibrium with J0 = 83 kA.

−λ2ρ0

∫
dr|ξ⊥|2 =

∫
dr

[
|Q⊥|2 − JeqQ⊥ × ξ⊥ · ẑ

+
(∇Ω · ξ⊥)(∇peq · ξ⊥)], (22)

where λ is the growth rate, and

ξ⊥ = ∇φ̃ × ẑ, (23)

Q⊥ = ∇
([
φ̃, ψeq

]
+ f∗

∂φ̃

∂z

)
× ẑ. (24)

This equation holds only if the resistivity is zero. The first
term on the right-hand side is absolutely positive, whereas
the remaining two terms can be negative and thus can drive
instability. In the present analysis of low-beta plasma, the
first of these, which is referred to as the current-driven
term, is more significant. Using integration by parts, this
term can be converted into the expression

δWc =

∫
dr

[
− (∇Jeq · Q⊥)φ̃]. (25)

In the cylindrical limit, this is written as

δWc|cylinder = 2π2
∫ a

0
dr

[
m 2

0 〈Jeq〉′ f∗(ῑ − n/m0)φ 2
m0

]
,

(26)

where m0 is the poloidal mode number of the dominant
mode, and 〈Jeq〉 is the flux-averaged toroidal current. In the
usual case of 〈Jeq〉′ < 0, the regions where ῑ < n/m0 and
ῑ > n/m0 correspond to the stable and unstable regions, re-
spectively. Configurations without resonant surfaces seem
to be more unstable because the region where ῑ � n/m0 and
ῑ > n/m0 is broader.

3.3 Convergence study
The code used in this study, in which the inverse

power method is applied to solve the eigenvalue problem,
can pick up various modes with different growth rates.
Here, we examine only modes with the largest growth
rates. The instability of the described equilibria is explored

for n = 2 and n = 4 modes, restricting our consideration to
modes relevant to ῑ = 2/3 rational surfaces.

The results of the convergence study are shown in
Fig. 4; the growth rate is plotted as a function of Nr. Here,
Nr is the number of radial mesh points, and S is the
magnetic Reynolds number defined as S = τR/τH with

τR = a2/η and τH =

√
ρ0R 2

0 /B 2
0 . The growth rates are

almost independent of the number of mesh points in the
range 1000 ≤ Nr ≤ 3000. As for the eigenfunctions, the
mode structures obtained at different values of Nr greater
than 1000 are almost identical for any case. The fixed value
used in this paper is Nr = 2000. This number is suffi-
cient to evaluate growth rates and eigenfunctions. It is also
shown to be sufficient to yield accurate results for the other
equilibria.

3.4 Resistive modes
Figure 5 shows the growth rate of the fastest growing

mode as a function of S . The growth rate is plotted as a
function of J0 in Fig. 6. When J0 = 99 and 111 kA with
n = 2 and J0 = 99 and 105 kA with n = 4, the modes are
also unstable without resistivity, as expected from Fig. 5.
Figure 7 shows the mode structures for J0 = 83 kA. The
eigenfunctions have the form of the resistive interchange
mode in the case of S = 105. The stream function is even
with respect to the inner resonant point (r/a � 0.34), and
the poloidal flux has a null point there. When S is in-
creased, the mode structures change to those of the tearing
mode. The stream function becomes an odd function, and
the null point of the poloidal flux disappears. The stream
function is localized on the left side of the inner rational
point, which corresponds to the unstable region for the
current-driven contribution described in Sec. 3.2, i.e., the
region corresponding to δWc|cylinder < 0, for n = 2. Con-
cerning the S dependence of the growth rate, the scaling
exponent defined as −(ln λ)′/(ln S )′ is almost equal to one
third, which is that of resistive interchange mode [8], at any
point.
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Fig. 5 S dependence of the growth rates of (a) n = 2 and (b) n = 4 modes for various values of J0.

Fig. 6 Growth rate as a function of J0 of (a) n = 2 and (b) n = 4 modes with S = 105 and S = 108. Arrow indicates the point where the
minimum value of the rotational transform is 2/3.

3.5 Non-resonant modes
Figure 8 shows the mode structures of φm for J0 =

111 kA with n = 2 and J0 = 105 kA with n = 4. The
mode structures change very little for S ranging from 105

to 108. The stream function is more localized near the point
where ῑ′ = 0 for n = 4 than for n = 2. The mode struc-
tures are almost identical in the interval where the growth
rates of the different values of resistivity in Fig. 6 almost
coincide. In this region, the ῑ = 2/3 rational surfaces dis-
appear, and the modes are non-resonant. The region where
these non-resonant modes, which are ideal modes, appear
is broader for n = 2 than for n = 4. When J0 becomes
sufficiently large, the ideal modes are replaced by resistive
modes whose dominant Fourier components are m = 2 and
m = 5 for n = 2 and n = 4, respectively.

The non-resonant modes are more unstable than the
resonant modes, as shown above. This contrasts with toka-
mak cases with hollow current density profiles (reversed
central shears). Unlike such heliotron plasmas as analyzed
above, the current-driven term contributes to stability for
non-resonant modes in tokamak plasmas whose current
density profiles are hollow. In such tokamak plasmas, the
rotational transform is below the relevant rational value,
and the toroidal current density has a negative gradient as

a function of radius in the region where the perturbation
of a non-resonant mode tends to be localized, i.e., where
ῑ′ � 0.

3.6 Tokamak cases
For reference, in the following we show the results of

ideal stability calculations on cylindrical plasmas of toka-
maklike equilibria with hollow current density profiles.
This stability analysis is based on the full MHD equations.
The linearized ideal MHD [9] is used for more accurate
calculation, although the expression for the current-driven
term in the ideal MHD model is different from that in the
RMHD model. The equation used is

λ2ρm,eqũ =
1
μ0

(∇ × Beq) × (∇ × (ũ × Beq))

+
1
μ0

(∇ × ∇ × (ũ × Beq)) × Beq

+∇(ũ · ∇Peq + γPeq∇ · ũ). (27)

Here, ρm,eq, Beq, and Peq, which are equilibrium quantities,
denote the mass density, magnetic field, and pressure, re-
spectively. γ is the ratio of the specific heats. The growth
rate λ and perturbed velocity ũ are to be determined. The
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Fig. 7 Eigenfunctions φm and Am for the LHD-like equilibrium with J0 = 83 kA. The two cases refer to (a) n = 2 and (b) n = 4. Arrows
indicate the positions of ῑ = 2/3 surfaces.
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Fig. 8 Eigenfunctions of (a) n = 2 and (b) n = 4 modes for the LHD-like equilibria with (a) J0 = 111 kA and (b) J0 = 105 kA. These
profiles are obtained at S = 108.

Fig. 9 (a) Toroidal current density and (b) rotational transform as functions of minor radius. Current density profiles are obtained at
P0 = 0.05/μ0. The positions of the peaks in the case of P0 = 0.1/μ0 are much the same as those in this figure.

inverse power method is applied to solve the eigenvalue
problem as in the instability analysis for heliotron plasmas.
We consider cylindrical plasmas whose pressure and safety
factor profiles are given by

P(r) = P0(1 − r2)2, (28)

q(r) =
q0

4

(
1 +

r2

0.4122

)(
1 + 3 exp

( − r2

0.2732

))
,

(29)

with P0 and q0 constant. The plasma minor radius and
length are 1 m and 3 × 2π m. The central magnetic field is
1 T, and the mass density is assumed to be constant. Also,
the poloidal and toroidal mode numbers examined here are
m = 2, n = 2 because we are concerned with localized
modes. Figure 9 shows toroidal current density and ro-
tational transform profiles for various values of q0. Note
that the peaks of the current density profiles are shifted in-
ward from those of the rotational transform profiles. The
growth rate is plotted as a function of the maximum value
of the rotational transform ῑmax in Fig. 10 for P0 = 0.05/μ0

and 0.1/μ0. It can be seen that the non-resonant modes are
more stable than the resonant modes. We now quote the

Fig. 10 Growth rates as functions of the maximum value of the
rotational transform. τH =

√
μ0ρ0 is the Alfvén time with

ρ0 being the constant mass density.

relation for the plasma energy [10],

−λ2K = δWs + δWp + δWc, (30)

where δWs is the sum of all the stabilizing terms, and δWp

and δWc represent the destabilizing contributions which
are referred to as the pressure-driven and current-driven
terms, respectively. Also, K is the kinetic energy. The
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Fig. 11 Potential energies as functions of the maximum value of the rotational transform. The two cases refer to (a) P0 = 0.05/μ0 and (b)
P0 = 0.1/μ0.

values of these potential energies are plotted as functions
of ῑmax in Fig. 11. When ῑmax is sufficiently above unity,
the contributions of the pressure-driven and current-driven
terms are comparable. As ῑmax approaches to unity, δWc/K
becomes small, whereas δWp/K does not change so much.
When ῑmax is below unity, i.e., no resonant surface exists,
δWc makes a stabilizing contribution, as expected from the
RMHD model.

4. Summary
We investigated instabilities in low beta LHD-like

plasmas with peaked toroidal current density profiles using
reduced resistive magnetohydrodynamic equations. For
relatively small values of total current, the two ῑ = 2/3 sur-
faces are separated by a large distance, and resistive modes
that have the properties of the resistive interchange mode
are found in low S . The mode structures of the modes
change to those of the tearing mode as S increases. When
J0 is increased such that the separation between the two
rational surfaces is small, the system becomes unstable to
ideal modes. When J0 is further increased, current-driven
non-resonant global modes with larger growth rates appear.
Unlike the case in tokamak plasmas, the current-driven
term contributes to instability in the case of a non-resonant
mode for such heliotron plasmas as analyzed in this study.
This is why the non-resonant modes can be more unstable
than the resonant modes.

Kink and tearing modes with m = 2 and n = 1
have been examined previously in configurations of LHD-
like plasma similar to the present ones [11]. No unstable
non-resonant mode was obtained in those configurations,
whereas non-resonant modes appear in the present ones. It
is conjectured that 〈Jeq〉′ is relatively small in the region
where ῑ′ � 0 in the previous case and the small current-
driven contribution reduces the possibility of instability.
There is no pressure-driven contribution to the potential
energy due to zero-beta in the case of Ref. [11], and we
consider that the zero-beta condition prevents non-resonant
modes from becoming unstable. It is pointed out that pres-
sure gradient is not necessary for the instability of non-

resonant modes. In fact, non-resonant modes appear in the
zero-beta calculation with the present configurations cor-
responding to non-resonance.

Appendix
The potential function of averaged magnetic curvature

is calculated as

Ω(s, θV) =
〈R2〉
R 2

c
− 1 +

〈R2〉
R 2

c

〈B 2
δ 〉

B 2
c
, (A1)

where Rc and Bc are the major radius and magnetic field at
the plasma center, respectively, and R and Bδ are the major
radius and oscillating magnetic field component, respec-
tively. Brackets are defined by

〈X〉(s, θV) =
∫ 2π

0
X(s, θV, ζV)dζV/2π, (A2)

for any quantity X. Here (s, θV, ζV) are flux coordinates
used in the VMEC code, s labels the flux surfaces, and θV

and ζV are the poloidal and toroidal angle variables, re-
spectively. The toroidal magnetic field f∗ is given by

f∗(s) = − 2πRcψ
′
eq

ῑ
∫ 2π

0

(
∂〈R〉
∂s

∂〈Z〉
∂θV
− ∂〈R〉

∂θV

∂〈Z〉
∂s

)
dθV

, (A3)

where ψeq(s) =
(
χ(1)−χ(s)

)
/Rc; 2πχ(s) is the poloidal flux

inside the flux surface labeled by s in the VMEC code, and
Z is the height above the midplane. The current density
Jeq(s, θV) is determined such that Jeq − Ωdpeq/dψeq is a
function only of s, and the current flowing between the
averaged flux surfaces labeled by s1 and s2 is equal to that
flowing between the flux surfaces labeled by s1 and s2 in
the VMEC code for any quantities s1 and s2.
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