Properties of N-doped Diamond-like Carbon Films Prepared by the PLD Method

Shengyin LI^{1,2)}, Weidong WU¹⁾, Xueming WANG¹⁾, Feng WANG¹⁾, Yongjian TANG¹⁾ and Weiguo SUN²⁾

 ¹⁾Research Center of Laser Fusion, Mianyang 621900, Sichuan, China
²⁾Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, Sichuan, China (Received 20 November 2008 / Accepted 18 June 2009)

N-doped diamond-like carbon (DLC) films were deposited on Si substrates by pulsed laser deposition (PLD) at varying N₂ pressure. The films were characterized by Raman spectroscopy and X-ray diffraction (XRD). Spectra show that the sp² hybridized carbon content increases with increasing N₂ pressure and that the films have a mainly amorphous structure. The residual stress of the films is reduced from 31.8 to -2.2 GPa by N-doping at appropriate N₂ pressure.

© 2009 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: diamond-like carbon, N-doping, pulsed laser deposition, residual stress

DOI: 10.1585/pfr.4.S1008

Diamond-like carbon (DLC) films have many superior properties, including mechanical hardness, dielectric strength, chemical inertness, low coefficient of friction, and optical transparency in the infrared ranges, making them promising for a wide range of applications [1, 2]. They can be synthesized by a variety of methods, including pulsed laser deposition (PLD) [2, 3] and, under some conditions, filtered cathodic vacuum arc (FCVA) deposition [4]. DLC properties approach those of crystalline diamond. However, the films have very high intrinsic stress [5, 6] and consequently tend to exhibit low adhesion with increased thickness [5,6], thus severely limiting their practical applications.

Alloying amorphous carbon (a-C) films with transition metals such as Ni, Co, Ti, Mo, and W is a common strategy for reducing residual stress in DLC films [7]. The effects of dopants such as B, P, and N on the microstructure, electrical structure, and mechanical and optical properties of a-C films have been studied. However, there has been no extensive study on the effect of nitrogen concentration on the properties of N-doped DLC films.

In this work, we prepared N-doped DLC films by PLD at varying N_2 pressure. We then investigated the structure and residual stress of the films by Raman spectroscopy and X-ray diffraction (XRD).

N-doped diamond-like carbon films were deposited on Si wafers by PLD at room temperature. The distance between target and substrate was 4 cm. The excimer laser energy density was 7.5 J/cm². Nitrogen pressure was in the range $8-20 \times 10^{-3}$ Pa.

The crystal structures and residual stresses of the films were determined by X-ray diffraction (X Pert PRO) us-

ing Cu K_{α} radiation with an incidence angle of 0.5° and a scanning resolution of 0.02°. The structures were further analyzed by visible Raman spectroscopy (Renishaw) with Ar laser (514.5 nm). Spectra were recorded in the 900-2500 cm⁻¹ range. All film thicknesses were about 500 nm, as determined by cross-section scanning electron microscopy (SEM).

Figure 1 shows Raman spectra of the films deposited at varying N₂ pressure. Broad asymmetric bands are evident between 1000 and 1800 cm^{-1} , similar to those for DLC [2], indicating that the diamond-like phase predominates in the films. The spectra can be deconvoluted into

Fig. 1 Raman spectra of the films at varying N₂ pressure (Pa): (a) 8.0×10^{-3} ; (b) 6.0×10^{-2} ; (c) 2.5×10^{-1} , (d) 2.8; (e) 20.

Table 1 Raman data and residual stresses of DLC: N films

Sample	N ₂ pressure (Pa)	G peaks Position (cm ⁻¹)	D peaks Position (cm ⁻¹)	I_D/I_G	σ (GPa)
А	8.0×10^{-3}	1561	1390	0.54	-14.2
В	6.0×10^{-2}	1560	1393	0.77	-2.2
С	$2.5 imes 10^{-1}$	1559	1392	0.75	-3.5
D	$2.8 imes 10^{\circ}$	1557	1387	1.52	9.1
Е	$2.0 imes 10^1$	1579	1369	-	31.8

Fig. 2 GIXRD spectra of the films at varying N_2 pressure (as for Fig. 1).

two Raman active bands: D (disorder) and G (graphitic) bands [2, 6]. All peak-fitting parameters were obtained by mixing Gaussion and Lorenzian shapes and linear backgrounds. The G band is attributed to the stretching-vibration mode of any pair of sp^2 sites, both in C=C chains and aromatic rings. The D band is attributed to the breathing mode of sp^2 sites in aromatic rings only [1].

Table 1 shows changes in the ratio of D-band to Gband intensity (I_D/I_G) and the residual stress σ at varying N₂ pressure. The ratio increases with increasing pressure, indicating that the relative concentration of sp² atoms increases in the films. The D and G bands shift a little with changing N₂ pressure. In addition, as shown in Fig. 1, weak peaks at around 2230 cm⁻¹ correspond to C = N [8] bonds, implying that the degree of C = N bonding is very small compared with the degree of carbon-carbon bonding.

Figure 2 shows glancing-incidence XRD (GIXRD) spectra of the films deposited on Si substrates at varying N₂ partial pressure. No significant diffraction peaks other than for the Si substrate are observed for all films, indicating that the films have a mainly amorphous structure. However, obvious peaks at $2\theta = 40.04^\circ$ for samples A and E may correspond to formation of a CN_x phase. Residual stress is determined by measuring the shift in Si-substrate diffraction peak before and after deposition and then calculating quantitatively by the following equation [9]

$$\sigma = \frac{E}{\nu} \frac{d_n / \cos(\theta_n - \alpha) - d_0 / \cos(\theta_0 - \alpha)}{d_0 / \cos(\theta_0 - \alpha)},$$
 (1)

where E, v, d_n , θ , and α are the Young's modulus, Poisson's ratio, *d*-spacing for (*hkl*) planes, and X-ray diffraction and incidence angles, respectively. The residual stresses of the films are summarized in Table 1. Stress has been reduced from 31.8 to -2.2 GPa by N-doping at appropriate N₂ partial pressure.

N-doped diamond-like carbon films have been deposited by PLD at varying N₂ pressure. Raman spectra studies show that the sp² hybridized carbon content increases with increasing N₂ pressure. XRD studies show that the films have a mainly amorphous structure and that the residual stress of the films is reduced to -2.2 GPa by N-doping at appropriate N₂ partial pressure.

This project was supported by the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2005Z0805).

- [1] J. Robertson, Phys. Rev. Lett. 68, 220 (1999).
- [2] F. Wang, W.D. Wu *et al*, Sci. China. Ser. E-Tech. Sci. **52**, 850 (2009).
- [3] M. Rusop et al, Diam. Relat. Mater. 13, 2174 (2004).
- [4] X. Shi, D. Flynn et al, Phil. Mag. B 76, 351 (1997).
- [5] Z.L. Akkerman et al, J. Appl. Phys. 80, 3068 (1996).
- [6] F. Wang, W.D. Wu *et al*, High Power Laser and Particle Beams 19, 1649 (2007).
- [7] N. Savvides, J. Appl. Phys. 59, 4133 (1986).
- [8] M. Hamschild and H. Wenzed, *Environment Assessment of Productions*, Vol 2 (Chapman & Hall, London, 1997).
- [9] S. Bhattacharyya, J. Hong and G. Turban, J. Appl. Phys. 83, 3917 (1998).