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Effects of the Stochasticity on Transport Properties in High-β LHD
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Effects of the stochasticity of magnetic field lines on transport properties are investigated. In a high-β LHD
plasma, the structure of field lines in the peripheral region becomes stochastic by finite-β effects but the finite
pressure gradient exists in that region. The radial diffusion coefficient and the Kolmogorov length of stochastic
field lines are estimated. In the stochastic region, the radial diffusion of stochastic field lines becomes large and
the Kolmogorov length becomes short due to increasing β. In that region, the radial heat transport becomes large
due to the stochasticity of field lines.

c© 2009 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: LHD, high-β, HINT2, stochasticity, radial heat diffusivity

DOI: 10.1585/pfr.4.036

1. Introduction
Generating and keeping clear flux surfaces are aims of

magnetic confinement researches, because the stochastic-
ity of magnetic field lines leads the degradation of the con-
finement connecting between core and edge regions. There
are some analytical works investigating the impact of the
stochasticity of magnetic field lines on the radial transport
property [1–4]. In those works, Rechester and Rosenbluth
pointed out the radial heat transport due to stochastic field
lines relates to both the stochastic diffusion parallel and
perpendicular to the magnetic field [1]. On the other hand,
the stochasticity of field lines due to finite-β effects is an in-
trinsic property in stellarator/heliotron. Since the pressure-
induced perturbed field breaks the symmetry of the field,
the structure of magnetic field lines becomes stochastic,
especially in the peripheral region. In order to aim stel-
larator/heliotron reactors, studies of the transport due to
stochastic field lines are critical and urgent issues.

The LHD is an L = 2/M = 10 heliotron device.
Up to now, three-dimensional (3D) magnetohydrodynamic
(MHD) equilibria were studied using a 3D MHD calcu-
lation code, HINT/HINT2 [5, 6], which is an initial value
solver based on the relaxation method without the assump-
tion of nested flux surfaces. In Refs. [5,6], it was predicted
the field structure becomes stochastic due to increasing β.
In addition, simulating HINT2, the finite pressure gradi-
ent ∇p can exist in the stochastic region [6]. If the plasma
is collisional, where the electron temperature in the pe-
ripheral region is several tens of electron volts, the con-
nection length is still long compared to the electron mean
free path in the region [7]. That is, there is a possibility
to keep the finite pressure on stochastic file lines. On the
other hand, LHD experiments suggest the plasma pressure
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spread over the region expected stochastically [8]. This
suggests two possibilities. One is clear flux surfaces are
kept in the finite-β field. Thus, the temperature profile
changes smoothly toward peripheral region. Another is
flux surfaces become stochastic but the stochastization af-
fects the ‘transport’ in the peripheral region.

In this study, properties of 3D MHD equilibrium and
the radial heat transport due to stochastic field lines in
high-β LHD equilibria are ‘practically’ investigated in
high-β LHD plasmas. In next section, using the HINT2
code [6], the degradation of flux surface quality due to
finite-β effects is studied in a LHD configuration. Then,
the diffusive property of stochastic field lines is practically
studied using the analytical theory [1]. Lastly, results are
briefly summarized and shown future subjects.

2. Degradation of Flux Surface due to
Increasing β
Figure 1 shows Poincaré plot of field lines for the vac-

uum field (Z > 0: red) and a finite-β equilibrium (Z < 0:
blue) and profiles of the connection length LC along R on
Z = 0 const. plane for an inward shifted configuration
(Rax = 3.6 m, Ap = 5.8, κ ≈ 1), where Ap is the plasma
aspect ratio and κ is an averaged elongation of the plasma
cross section along the toroidal angle φ. The figure is plot-
ted on horizontally elongated cross section. The volume
averaged beta 〈β〉dia is about 3% and the initial pressure
profile is set to p = p0(1 − s)(1 − s4), where p0 is the pres-
sure on the magnetic axis and s is the normalized toroidal
flux on the edge. This is a typical profile in high-β exper-
iments. The total net toroidal current is assumed to zero
as the net-current free equilibrium. In LHD experiments,
achieved β depends on the preset axis position Rax in the
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Fig. 1 Poincaré plots of vacuum field (Z > 0: red) and a finite-β
equilibrium (Z < 0: blue) are shown in an inward shifted
configuration (Rax = 3.6 m, Ap = 5.8, κ ≈ 1). Arrows
indicate positions of well-defined LCFS on Z = 0 const.
plane, respectively. Upper figure shows profiles of the
connection length LC along R on Z = 0 const. plane.

vacuum and 3.6 m is the standard in high-β operation. For
the vacuum, clear flux surfaces are kept in the peripheral
region. However, for finite-β, the last closed flux surface
(LCFS) shrinks than the vacuum one and the field lines be-
come stochastic in the peripheral region. In addition, small
island chains on rational surfaces evolve. Arrows in Fig. 1
indicate positions of the LCFS on Z = 0 const. plane. The
plasma volume with clear flux surfaces decreases about
25% due to the stochasticity of field lines. According to
increasing the stochasticity of field lines, the profile of the
connection length LC changes and LC becomes short in
the stochastic region. However, in spite of increasing the
stochasticity, LC is still the order of 102.

In Fig. 2, Poincaré plot of field lines (Z > 0: red), con-
tour lines of the plasma pressure (Z < 0: blue) are plotted.
As the reference, profiles of the electron temperature Te in
a typical shot (#46465, t = 1.625), the electron mean free
path (emfp) λe estimated on the same shot and the con-
nection length of field lines LC are also shown along R on
Z = 0 const. plane. Two arrows in the profile of Te in-
dicate positions of well-defined LCFS for the vacuum on
Z = 0 const. plane. In figs, the plasma pressure exists in
the peripheral region expected stochastically and contour
lines keep closed surfaces in the stochastic region. The ex-
periment suggests existence of Te in the stochastic region.
The physics of the existence of Te in the stochastic region
is proposed as following. Usually, in high-β experiment
of LHD, since the plasma is the collisional plasma with
low magnetic field and low temperature, the λe is shorter
than LC in the peripheral region. From the viewpoint of the
transport, this means the stochastic field line can keep the
finite pressure gradient ∇Te in the peripheral region.

The equilibrium calculation suggests the stochastic-

Fig. 2 Poincaré plot of magnetic field lines (Z > 0: red) and
contour lines of the plasma pressure (Z < 0: blue), pro-
files of the electron temperature Te (#46465, t = 1.625),
the connection length LC and the electron mean free path
λe on Z = 0 const. plane are shown in the finite-β equi-
librium. Two arrows in top figure indicate positions of
well-defined LCFS for the vacuum on Z = 0 const. plane.

Fig. 3 The change of positions of inward (red) and outward
(green) LCFS on horizontally elongated cross section is
plotted as the function of 〈β〉dia. The shift of the axis is
also plotted for the reference (blue). All are plotted on
Z = 0 const. plane

ity of magnetic field lines and existing ∇Te in the stochas-
tic region for the net-current free equilibrium. However,
if the stochastic region increases widely, it is unclear ei-
ther the stochastic region can keep ∇Te or not. In order
to study the degradation of flux surfaces due to increasing
β, the change of the LCFS and magnetic axis is shown in
Fig. 3 as the function of 〈β〉dia. Three positions are plot-
ted on Z = const. plane corresponding to Fig. 2. At first,
the change of the outward torus is considered. For low-β
equilibria (< 1%), the LCFS is almost fixed to the vac-
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uum position. Then, increasing β (> 1%), the LCFS still
sustains near the vacuum LCFS. For high-β (> 2%), the
LCFS shrinks due to increasing β. On the other hand, the
inward region, the LCFS degrades monotonically due to
increasing β. As a result, we guess the degradation of the
transport is significantly important at high-β (> 2%). The
magnetic axis also monotonically changes due to increas-
ing β. At a high-β (〈β〉dia ∼ 3%), the Shafranov shift Δ/a
achieves about 0.5. However, the MHD equilibrium does
not collapse and it is sustained.

3. Radial Heat Diffusivity due to
Stochastic Field Lines
The radial heat transport increases as it gains the

stochasticity. In the collisionless plasma, where the elec-
tron mean free path λe is very long, the radial heat conduc-
tivity χr due to ‘only’ the stochasticity of magnetic field
lines is given by

χr = DFLvth, (1)

where vth is the electron thermal velocity and DFL is the
diffusion coefficient of magnetic field lines and defined by

DFL =
〈Δr2〉
Lcol
, (2)

where Lcol is the correlation length to calculate the diffu-
sion coefficient. Since χr is the contribution of only the
stochasticity of magnetic field lines, the effective radial
transport χeff is given by

χeff = χr + χ⊥. (3)

On the other hand, in the collisional plasma, Krommes
et al. identifies three different subregimes with decreas-
ing collisionally [4], which are fluid regime (τ⊥ < τ|| <
τk), Kadomtsev-Pogutse (τ⊥ < τ|| < τk) and Rechester-
Rosenbluth (τ⊥ < τ|| < τk) regime, where τ|| = L0

2/χ||,
τk = Lk

2/χ|| and τ⊥ = 1/(k⊥2χ⊥). In typical parame-
ters of LHD experiments, the collisionality is expected the
Rechester-Rosenbluth (RR) regime in the region expected
stochastically because χ||/χ⊥ ∼ 106 [9–11]. The radial heat
conductivity due to the stochasticity of field lines is given
by

χr = DFLχ||/Lk (4)

in the RR regime, where Lk is the Kolmogorov length. The
Kolmogorov length Lk is a characteristic parameter to mea-
sure the stochasticity. Thus, Eq. 4 means the parallel con-
tribution of the stochasticity is very important as well as
the perpendicular contribution, because Lk plays the role
of the correlation length along field lines.

As above mentioned, to estimate χr, DFL and Lk are
necessary. The question is how to calculate those values.
In this study, we use following procedure to calculate DFL

of field lines; (i) the distribution of the normalized toroidal
flux s = Φ/Φedge is given at first, where Φ is calculated by
integrating inside contour lines at p = const. (ii) then, the
normalized minor radius ρ is calculated and field lines are
traced from distributed points on ρ = const. plane. (iii) in
the last, the mean squared displacement of 〈Δρ2〉 is calcu-
lated with tracing field lines along L and the distribution
coefficient is given by

DFL =
r2

eff〈Δρ2〉
Lcol

, (5)

where reff is the effective minor radius. To estimate
the radial diffusion using the mean squared displace-
ment, the definition of the radial coordinate is very im-
portant. In tokamak studies of the Dynamic Ergodic Di-
vertor (DED) [12, 13], the radial coordinate is defined by
2D MHD equilibrium field because they use the vacuum
approximation, which is 2D MHD equilibrium superposed
the perturbed field for the vacuum. It is an easy way to cal-
culate the radial displacement. However, that approxima-
tion does not include the plasma response on the perturba-
tion field. In this study, since we have the 3D MHD equi-
librium field obtained from the HINT2, we use the aver-
aged plasma pressure to integrate the toroidal flux Φ. The
averaged plasma pressure is calculated reproducing the
experimental observation using HINT modeling (see Ap-
pendix). On the other hand, in tokamaks, the Kolmogorov
length is given by the quasi-linear form [4], which is con-
nected to the Chirikov parameter because the external per-
turbations are given. However, since the stochasticity
in stellarator/heliotron plasmas is driven by the pressure-
induced perturbation, the mode number and its amplitude
of perturbations are unclear and the calculation of those
values is very difficult. We have 3D MHD equilibrium
field including all modes of pressure-induced perturbations
but the Fourier decomposition of those perturbations on the
stochastic field is difficult because of the radial coordinate.
Thus, we estimate the Kolmogorov length using a follow-
ing definition,

d = d0 exp

(
l

Lk

)
, (6)

where d is the circumference of small flux tube and l is the
length of the flux tube. Using this definition, the impact
finite-β effects on Lk is studied in vacuum configurations
in LHD [8] and finite-β equilibria in Wendelstein 7-X [14].

In Fig. 4, profiles of DFL and 1/Lk are plotted. The
Kolmogorov length 1/Lk is plotted as the inverse to com-
pare the change of DFL. Detailed Poincaré plot of field
lines and the profile of LC are also plotted for the refer-
ence. Colors indicates starting points of field line tracing
as following; red is 4.3 m < R < 4.48 m and for R > 4.48 m
color changes at each 2 cm from green, blue, purple, light
blue, yellow, black and orange. DFL is very small in clear
flux surfaces. However, in the stochastic region, the diffu-
sion coefficient increases along R. In Poincaré plot, field
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Fig. 4 Profiles of the connection length LC, the diffusion coef-
ficient of field lines DFL and the inverse of Kolmogorov
length 1/Lk are plotted along R(4.3 < R < 4.7). Poincaré
plot of field lines is also plotted for the reference. Blue
lines in figs indicate outermost position of LCFS for the
vacuum.

lines with colored green becomes slightly stochastic and
turn around with small width along the toroidal direction.
At R > 4.5 m, field lines overlap between both side and
become perfectly stochastic. However, in the stochastic
region, DFL is relatively small ∼ 10−4. On the other hand,
the inverse of the Kolmogorov length rapidly becomes ex-
ponentially short along R and the jump appears near the
LCFS. This suggests the parallel correlation length is more
sensitive than the perpendicular direction. In the outermost
position calculated (R = 4.64 m), Lk is about 11 m.

As discussed in previous section, the Shafranov shift
Δ/a achieved to about 0.5 in the inward shifted configura-
tion. In order to achieve higher β, the reduction of the shift
is necessary. An aspect to reduce the shift is the control of
the plasma aspect ration Ap. In LHD experiments, the opti-
mization of the plasma aspect ratio had done. For Ap = 6.6,
the diamagnetic β achieved 4.8% in the quasi-steady state
operation. In Fig. 5, Poincaré plots of field lines in an opti-
mized configuration (Ap = 6.6) are plotted for the vacuum
(Z > 0: red) and a finite-β equilibrium (Z < 0: blue).
The volume averaged beta 〈β〉dia is 4.8% in the equilib-
rium. Though the achieved β is relative high, the shift of
the axis is smaller than the inward shifted configuration.
However, the magnetic field lines become stochastic and
island chains evolve. In Fig. 6, profiles of DFL and 1/Lk in
the optimized configuration are plotted corresponding to
Fig. 4. Comparing Fig. 4, the increase of DFL is relatively
large. However, 1/Lk is almost same. The jump of 1/Lk

also appears but the jump is the inside on islands. Since
DFL is relatively large than the inward shifted configura-

Fig. 5 Poincaré plots of magnetic field lines for the vacuum field
(Z > 0: red) and a finite-β equilibrium (Z < 0: blue)
are plotted in an optimized configuration (Rax = 3.6 m,
Ap = 6.6, κ ≈ 1).

Fig. 6 Profiles of the connection length LC, the diffusion coef-
ficient of field lines DFL and the inverse of Kolmogorov
length 1/Lk are plotted for an optimized configuration as
corresponding to Fig. 4. Poincaré plot of field lines is also
plotted for the reference. Blue lines in figs indicate out-
ermost position of LCFS for the vacuum.

tion, the degradation of the transport is expected.
Finally, we estimate the radial heat conductivity χr due

to only the stochasticity of field lines from above consider-
ation. In Fig. 7, radial profiles of the electron temperature
Te and density ne in the typical shot (#61962) correspond-
ing to Fig. 3 are shown at 4.3 m < R < 4.7 m. A dashed
line indicates the outermost position of the LCFS on Z = 0
const. plane. The finite Te and ne exist over the vacuum
LCFS although field lines become stochastic in that region.
From Te and ne in the shot, the radial heat conductivity χr

is estimated with DFL and Lk in Fig. 4. Here, χ|| is defined
by following equation [15],

χ|| = 3.16
neTeτe

me
(7)
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Fig. 7 Profiles of the electron temperature Te and density ne

are plotted for the inward shifted configuration along
R(4.3 < R < 4.7) on Z = 0 const. plane. The profiles of
the electron heat conductivity χr due to only the stochas-
ticity of field lines is also plotted.

and

τe =
3
√

meT 3/2
e

4
√

2πλe4Z2ne

. (8)

Of course, χr is almost zero in the core with closed flux
surfaces. However, in the stochastic region, χr increases
with DFL and 1/Lk. At R = 4.55 m, χr becomes nearly
102 [m2/s]. In Ref. [16], the local transport χeff in the
plasma core was discussed. In that study, χeff is about
1 [m2/s] at R < 4.5 m. There is still keeping clear flux
surfaces. Thus, this result is not inconsistent to the ex-
periment but insufficient to compare the experiment. In
order to compare χr with the experimental data, it is neces-
sary to analyze the local transport in the stochastic region
(R > 4.5 m). The comparison of that and other estima-
tion, which are obtained from the transport code for the
edge plasma [9, 17], is a future subject. In tokamaks, it is
pointed out that the RR formulation is larger than results
of simulated studies [12, 13]. The confirmation of the RR
formulation is another subject.

4. Summary
The stochasticity of magnetic field lines and effects

on the transport properties due to finite-β effects are inves-
tigated in net-current free equilibria. Flux surfaces keep
clear structure until the intermediate-β (< 2%). However,
for high-β, flux surfaces rapidly degrade due to the in-
creased β. Characteristic properties, which are the diffu-
sion coefficient of magnetic field lines and the Kolmogorov
length, are estimated. In a high-β equilibrium, stochastic
properties appear in the edge. Using Rechester-Rosenbluth
formulation, the radial heat diffusivity due to only the
stochasticity of magnetic field lines is estimated. The esti-
mated diffusivity is very large. In this study, estimated Lk is
shorter than LC. This suggests a possibility that the theory
to consider this plasma is not the Rechester-Rosenbluth [1]
but the fluid model [4]. Anyways, since the Kolmogorov
length is estimated from limited equilibria, it is necessary

Fig. 8 Contour lines with different Lin (Z > 0 and Z < 0) are
shown at the plane corresponding to Fig. 1. Blue lines
indicate contour lines with Lin = 30 m and green lines
indicate Lin = 300 m. Contour lines in the edge are dif-
ferent.

further studies.
In addition, we consider only the net-current free equi-

librium. In recent LHD experiments, spontaneous evo-
lution and suppression of the magnetic island were ob-
served [18–20]. This suggests a possibility that stochas-
tic field lines are recovered by the plasma itself, so-called
‘self-healing’ [21]. With considering only the Pfirsh-
Schlüter (P-S) current, flux surfaces in the peripheral re-
gion become stochastic in this study. However, the self-
healing by the noninductive current like the bootstrap cur-
rent was proposed [22]. The study including that is another
future subject.

A. HINT modeling
The HINT2 calculates converged pressure distribution

in the finite-β field by

pi+1 = p̄ =

∫ Lin

−Lin

F pi dl
B∫ Lin

−Lin

dl
B

, F =
{

1 : for LC ≥ Lin

0 : for LC < Lin
(9)

where, i means a step number of iterations, LC is the con-
nection length of a magnetic field line starting each grid
point (LC is finite for open magnetic field lines), and Lin is
prescribed as an input parameter to control the calculation.
Equation 9 calculates the ‘averaged’ plasma pressure on
the flux tube. This corresponds to simulate the radial diffu-
sion of field lines. In order to consider this effects, profiles
of plasma pressure with different Lin (=30 m and 300 m)
are shown in Fig. 8. For Lin = 300 m, contour lines are dif-
ferent, especially in the stochastic region. If the distance
along B is shorter than Lin, the averaged pressure p̄ is set
to zero. In Fig. 2, since LC is 101 ∼ 102 m, the distribution
of p̄ is sensitive to Lin. This study has an assumption that
the electron temperature is low because of the considera-
tion of high-β experiments (see Fig. 2). Thus, we adopt Lin

is 30 m.
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