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Modeling Solar Wind Turbulence: The Kolmogorov-like Way∗)
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The spectral energy distributions of the magnetohydrodynamic (MHD) fluctuations of the solar wind tur-
bulence are derived using the dimensional arguments a la Kolmogorov within the framework of the Hall mag-
netohydrodynamics. While the velocity and the magnetic field fluctuations are dynamically related, the density
fluctuations could behave as a passive scalar and be simply convected by the velocity or the magnetic field fluc-
tuations. The Hall effect removes the degeneracy of the ideal Alfvénic spectra of the velocity and the magnetic
fluctuations, at spatial scales shorter than or equal to the ion- inertial scale, adding steeper branches to the ideal
MHD spectra. Which spectrum would the density fluctuations, behaving as a passive scalar, follow in such a
case? The answer leads to the interesting consequence that the electron density fluctuations should follow the
magnetic spectra since the electrons are frozen to the magnetic field and the ion density fluctuations should follow
the kinetic energy spectra as ions carry the inertia. Thus the electron and the ion density would have different
spectra at spatial scales equal to and smaller than the ion-inertial scale. However this raises the issue of the
quasineutrality that must be maintained at each scale within the Hall-MHD. One way to accommodate both the
quasineutrality as well as the electron- magnetic freezing in the Hall MHD is to discard the passive nature of the
density fluctuations; they must be dynamically active in the turbulence. The quasineutrality could also be restored
by a third species of particles providing a stationary background.
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1. Introduction
That the solar wind is turbulent has been known for

a long time. Fluctuations in the density, the velocity and
the magnetic fields exist on three major scales: (1) 11 year
solar cycle related variations and fast stream - slow stream
interactions due to solar rotation; (2) transient disturbances
originating on the sun and propagating out such as those
associated with solar flare caused blast wave with energy
∼ 1032 erg and (3) on hours or less scales are the waves
and turbulence in the plasma. For example the Alfvén
waves fluctuations have power law spectra k−p, p ∼ 5/3
along with other values of p. Key observations of the solar
wind turbulence are: 1. velocity, density, magnetic field
and temperature vary in time; 2. magnetohydrodynam-
ics accounted for fluctuations reasonably well, particularly
the shear Alfvén waves, indicating that the magnetosonic
waves are damped by kinetic effects; 3. Alfvén waves are
found always propagating outwards from the sun; 4. sim-
ilarity between the power spectra of the magnetic fluctu-
ations and the velocity fluctuations for an isotropic mag-
netofluid as well as fluid turbulence; 5. turbulence is driven
by stream - shear instabilities. The Alfvén waves be-
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ing the exact solutions lack evolution. However, the so-
lar wind turbulence shows evolution. Perhaps it is not all
Alfvénic; 6. Voyager and Helios missions provided obser-
vations from 0.3 to > 30 AU; 7. Reduced spectra are ob-
tained by averaging over the two directions perpendicular
to the solar wind velocity (Vs). The study of the solar wind
turbulence is of immense importance on several counts.
The solar wind is a distant plasma system that is accessible
to direct observations of nonlinear processes such as the
wave-particle and wave-wave interactions which have es-
sential bearing on the propagation of the cosmic rays. The
coupling of the solar wind and the magnetosphere defines
the solar-terrestrial relationship. The turbulence modifies
the transport processes with consequences for the space
weather.

The reduced spectra of the fluctuations are obtained
by averaging over the two directions perpendicular to the
solar wind velocity Vs. The spectra are a function of the
wavenumber along Vs. The spectral energy distributions
of the velocity and the magnetic field fluctuations in the
solar wind are now known in a wide frequency range,
starting from much below the proton cyclotron frequency
(0.1 - 1 Hz) to hundreds of Hz. The inferred power spec-
trum [1] of magnetic fluctuations (Fig. 1) consists of multi-
ple segments- a Kolmogorov like branch (∝ k−5/3) flanked,
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Fig. 1 Schematic representation of the observed magnetic en-
ergy spectrum in the solar wind on a log-log scale.

on the low frequency end by a flatter branch(∝ k−1) and,
on the high frequency end, by a much steeper branch
(∝ k−α1 , α1 � 3-4). Attributing the Kolmogorov branch
(∝ k−5/3) to the standard inertial range cascade, initial
explanations invoked dissipation [2] processes, in particu-
lar, the collisionless damping of Alfvén and magnetosonic
waves , to explain the steeper branch (∝ f −α1 , α1 � 3-4).
However, a recent critical study has concluded that damp-
ing of the linear Alfvén waves via the proton cyclotron
resonance and of the magnetosonic waves by the Landau
resonance, being strongly k (wave vector) dependent, is
quite incapable of producing a power-law spectral distri-
bution of magnetic fluctuations, the damping mechanisms
lead, instead, to a sharp cutoff in the power spectrum [3].
Cranmer and Ballogoeijen [4] have however, demonstrated
a weaker than an exponential dependence of damping on
the wave vector by including kinetic effects. However it is
still steeper than that required for explaining the observed
spectrum.

An alternative possibility, suggested by Ghosh et
al. [5], links the spectral break and subsequent steepening
to a change in the controlling invariants of the system in
the appropriate frequency range. Stawicki et al. [6] have
invoked the short wavelength dispersive properties of the
magnetosonic/whistler waves to account for the steepened
spectrum and christened it as the spectrum in the disper-
sion range. Krishan and Mahajan [7, 8], however, invoke
the Hall effect to model the steepened part of the spectrum,
and this should be correct since the steepening begins at a
scale close to the ion-inertial scale, a hallmark of the Hall
effect. The incompressible turbulence has no associated
density fluctuations. The density fluctuations, produced by
an independent mechanism, could be convected by the ve-
locity and the magnetic field fluctuations as a passive scalar

or they may be concomitantly generated in compressible
turbulence along with the other fluctuations. The relation
between the velocity and the magnetic field fluctuations
and the invariants of the Hall-MHD are derived in the next
section. The power spectra of fluctuations within the Hall-
MHD invoking the new invariant, the generalized helicity,
are derived in Sec. 3. The dilemma of the density fluc-
tuations, whether being convected by the velocity or the
magnetic fluctuations at spatial scales near the ion-inertial
scale, is discussed in Sec. 4 and the paper ends with a sec-
tion on conclusion.

2. Hall-MHD and Invariants
In the HALL-MHD (HMHD) comprising of the two

fluid Model, the electron fluid equation is given by
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Assuming inertialess electrons (me → 0), the electric field
is found to be:
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The ion fluid equation is :
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Substitution for E from the inertialess electron Eq. begets:
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The magnetic induction equation becomes:
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where B
¯

is seen to be frozen to electrons. Substituting for
V
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¯
/ene, one gets :
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We see that B
¯

is not frozen to the ions. Here ne = ni.
The Hall term dominates for (neec)−1J

¯
× B

¯
≥ V

¯ i × B
¯
/c

or the length scale L ≤ MAc/ωpi and the time scale T ≥
ω−1

ci where M is the Alfvénic Mach number and ωpi is the
ion plasma frequency.

The Hall term decouples electron and ion motion on
ion inertial length scales and ion cyclotron times. The im-
portance of the nonlinear Alfvénic state for MHD prompts
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one to speculate if an analogous exact solution exists for
the Hall MHD [10], a system which encompasses MHD.
We write the equations in a dimensionless form. The mag-
netic and the velocity fields are respectively normalized
by the uniform ambient field B0 and the Alfvén speed
VAi = B0/

√
4πρi, where ρi is the uniform ion mass den-

sity. The time and the space variables are normalized, re-
spectively, with the Alfvén travel time tA = L/VAi, and a
scale length L. In these units the following dimensionless
equations

∂B
¯
∂t
= ∇ × [

(V
¯ i − ε∇ × B

¯
) × B

¯

]
(7)

∂(∇ × V
¯ i)

∂t
= ∇ × [

V
¯ i × (∇ × V

¯ i)

−B
¯
× (∇ × B

¯
)
]

(8)

constitute the Hall-MHD in the incompressible limit. Here
ε = λi/L = c/ωpiL = VAi/Lωci and ωpi = (4πe2ni/mi)1/2

is the ion plasma frequency, λi is the ion inertial length.
Equation (8) has been obtained by taking the curl of the
equation of motion of the ion fluid (Eq. (4)). We split the
fields into their ambient and the fluctuating parts:

B
¯
= êz + b

¯
, V

¯ i = V
¯ 0 + v¯

, (9)

where V
¯ 0 = 0 and substitute in Eqs. (7) and (8) to get :
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Assuming a plane wave form (V
¯ k, B¯ k) exp(ikz− iωt) we get

the linear relations:

V
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¯ k = −
ω

k
B
¯ k, (12)
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k
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The solution of Eqs. (12) and (13) furnishes:

∇ × B
¯ k = λB

¯ k, λ
2 = k2,

B
¯ k = α(k)V

¯ k, α = −
ω

k
, (14)

and the dispersion relation is:

α = − εk
2
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4
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2
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One notices that the V
¯ k, B

¯ k relation of the waves is now k
dependent, the waves are dispersive and that they are non-
linear since for b

¯
given by Eqs. (12) and (13), the nonlinear

terms in Eqs. (10) and (11) vanish. For k � 1,

α→ ±1, ω→ ∓k (16)

reproducing the k independent MHD Alfvénic relationship
for both the co- and the counter propagating waves. For
k  1, it is easy to recognize, in analogy with the lin-
ear theory, that the α+ wave is the shear-cyclotron branch,
while the α− represents the compressional-whistler mode.
The frequency of the α+ wave approaches the ion gyro fre-
quency. The V

¯ k, B
¯ k relation would now give different spec-

tral distributions for the kinetic and the magnetic energy.
The Hall-MHD also supports an additional invariant called
the generalized helicity. The additional invariant and its
cascading characteristics along with the new spectral rela-
tions arising from the new V

¯ k, B
¯ k relation are discussed in

the next section.
The incompressible ideal and the Hall- MHD turbu-

lence supports two global invariants: the total energy E
and the magnetic helicity HM defined as
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∫
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∑
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i
k2
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where A is the vector potential.
The additional invariant of the Hall-MHD system, the

generalized helicity [11] is defined as:
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where A
¯

is the vector potential. Notice that HG − HM is a
combination of the kinetic and the cross helicities.

3. Power Spectra of Solar Wind Fluc-
tuations
The solar wind turbulence is modeled in terms of

the magnetohydrodynamic fluctuations. An assumed in-
put spectrum k−1 of the Alfvén waves is believed to de-
cay to generate the Kolmogorov k−5/3 spectrum. since the
Alfvénic fluctuations are characterized by velocity fluctu-
ation V

¯
= ±B

¯
, the velocity and the magnetic fluctuations

have identical spectra. The question of the origin of the k−1

spectrum has as yet no satisfactory answer although such a
spectrum is observed under different and disparate circum-
stances related to self-organized criticality. One alternative
is to derive the spectra using the dimensional arguments of
the Kolomogorov hypotheses according to which the spec-
tral cascades proceed at a constant rate governed by the
eddy turn over time (kVk)−1. The single power law (k−5/3)
Kolmogorov spectrum is derived invoking the cascade of a
single invariant, the total energy. The interaction between
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near neighbour wave vectors such that K3 = K1 ∼ K2, K1

K2 and K3 = 2K1 leads to cascade of energy to large K
or small spatial scales. In the presence of two invariants
as in 2D turbulence with total energy and the enstrophy as
the two invariants there is a dual cascade as discussed by
Hasegawa (1985) [9] and a fraction of the energy cascades
to large spatial scales as verified by numerical simulations.
The dual cascade originates at the merging point of the two
spectral branches which is also identified as the energy in-
jection scale. Thus the region around the merging point
is not in the inertial range. The regions away from this
point are in the inertial range and the locality is well sat-
isfied there. The ideal MHD supports two invariants, the
total energy and the magnetic helicity, and a dual cascade
is expected as discussed later in the paper. This is also sup-
ported by the observed solar wind spectra. Again the spec-
tral break region, identified as the energy injection region,
is not in the inertial region.

The case of the Hall- MHD brings in a third invari-
ant the generalized helicity. Thus it is evident while the
Kolmogorov conditions are applicable individually to each
spectral branch, the merging region of the two branches
is not strictly in the inertial range. As discussed by
Hasegawa, the energy injected in this region undergoes a
dual cascade and this region may possess additional struc-
ture. In conclusion the locality may not be satisfied in
the immediate neighbourhood of these regions but the rest
of the spectral branch well satisfies the locality condition.
Now about the cascade rate: The Iroshnikov- Kraichnan
phenomenology uses rate of cascade as (kVk)(Vk/VA) and
obtain a k−3/2 spectrum instead of the k−5/3 obtained by us-
ing the cascade rate as (kVk). Now (kVk) is greater than or
equal to (kVk)(Vk/VA) for Vk less than or equal to VA, the
Alfve’n velocity. The condition Vk ∼ Bk ∼ B0 may exist
sometime in the solar wind but Bk  B0 must be extremely
rare. Thus we have decided to use the hydrodynamic rate
kVk. Besides the solar wind experts insist that they observe
(−5/3) spectrum and not (−3/2)! (Goldstein et al. 1995).
With these qualifying remarks we can begin deriving the
spectra for each invariant.

For εE denoting the constant cascading rate of the total
energy E, we get the dimensional equality

(kVk)
(V2

k + B2
k)

2
= εE . (20)

where the wavevector k has been taken to be parallel to the
local ambient magnetic field. The omnidirectional spectral
distribution function WE(k) (kinetic energy per gram per

unit wave vector,
V2

k

2k ), then, takes the form

WE (k) = 2−1/3 (
εE

) 2
3 [1 + (α)2]−

2
3 k−

5
3 (21)

and

ME(k) = (α)2WE(k), (22)

where ME(k) = (B2
k/2k) is the similarly defined omnidirec-

tional spectral distribution function of the magnetic energy

Fig. 2 Power spectra (log-log scale) of the kinetic energy den-
sity WE(k) and the magnetic energy density ME(k) derived
from the total energy invariant E with Hall effect for the
α+ root.

density. The identical spectra (k−5/3)of the magnetic and
the velocity fluctuations in the absence of the Hall effect
are recovered for α = 1, ε = 0.

The spectral distributions WE(k) and ME(k) are shown
in Figs. 2 and 3 respectively, for the two roots α+ and α− for
different values of the Hall parameter ε. The steepening of
the spectra towards large values of k is evident for nonzero
values of ε.

The spectral distributions obtained from the cascading
of the magnetic helicity are found to be:

WH(k) = 2−1 (εH)
2
3 (α)

−4
3 k−1, (23)

and

MH(k) = (α)2WH(k). (24)

Again the identical spectra (k−1)of the magnetic and the
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Fig. 3 Power spectra (log-log scale) of the kinetic energy den-
sity WE(k) and the magnetic energy density ME(k) derived
from the total energy invariant E with Hall effect for the
α− root.

velocity fluctuations in the absence of the Hall effect are
recovered for α = 1, ε = 0.

The spectral distributions WH(k) and MH(k) are shown
in Figs. 4 and 5 for the two roots α+ and α− for differ-
ent values of the Hall parameter ε. The steepening of the
magnetic spectra towards large values of k is evident for
nonzero values of ε.

The cascading of the generalized helicity with a con-
stant rate εG , using the relation Bk = α(k)V

¯ k gives

(kVk)
[
k−1g(k)V2

k

]
= εG , (25)

g(k) = (α + εk)2,

leading to the spectral energy distributions :

WG(k) =
(
εG

) 2
3 [g(k)]−

2
3 k−1, (26)

Fig. 4 Power spectra (log-log scale) of the kinetic energy WH(k)
and the magnetic energy MH(k) derived from the mag-
netic helicity invariant HM with Hall effect for α+ root.

and

MG(k) = (α)2WG(k).

The spectral distributions WG(k) and MG(k) are shown in
Figs. 6 and 7, respectively, for the two roots α+ and α− for
different values of the Hall parameter ε. The generalized
helicity reduces to the magnetic helicity for ε = 0 and α± =
±1. The steepening of the spectra towards large values of
k is evident for nonzero values of ε.

It is clear that the spectral distributions
(WE,ME,WH,MH,WG,MG) reduce to the ones ob-
tained in the MHD case for α = 1, ε = 0. For large k, α
reduces to the two values: α−εk and α+ = ε−1k−1. For
α = ε−1k−1, corresponding to the shear Alfvén wave,
one can determine the kinetic and the magnetic energy
spectra using again the receipe for stringing together
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Fig. 5 Power spectra (log-log scale) of the kinetic energy WH(k)
and the magnetic energy MH(k) derived from the mag-
netic helicity invariant HM with Hall effect for α− root.

the various spectral branches. This spectra is shown in
Fig. 8 where the low k end (k−1) and (k−5/3) are derived
in the ideal MHD regime and the high k end (k−5/3) and
(k−7/3) for the kinetic energy and (k−11/3) and (k−13/3) for
the magnetic energy) are derived in the HMHD regime.
This is in accordance with the observed magnetic spectra
with the steepened part, now, being proposed to be in the
inertial range, in contrast to the other proposals which
have unsuccessfully put it in the dissipation range. In
the HMHD regime the kinetic and the magnetic energy
spectra are different as the two fluids now have their own
dynamics. There is a break in the spectrum at the ion
inertial scale, a scale which is the hallmark of the Hall
effect. We have built up the entire spectrum from the
cascade of the three invariants. The low k end of the
spectrum is governed by the ideal MHD and the high end

Fig. 6 Power spectra (log-log scale) of the kinetic energy den-
sity WG(k) and the magnetic energy density MG(k) de-
rived from the generalized helicity invariant HG with Hall
effect for α+ root.

by the Hall effect. In the Hall regime the size of the system
is identified with the ion inertial scale, the largest spatial
scale, and the fluctuations are at spatial scales smaller
than the ion inertial scale. The scales are still related by
L0 = V0t0 such that V0 is the Alfvén speed and t0 is the
inverse of the ion cyclotron frequency or the Alfvén travel
time of the ion inertial length. The system size changes
from undetermined in the ideal MHD to a finite size (ion
-inertial scale) in the Hall regime. One can consider this as
two Kolmogorov systems with two inertial ranges joined
by a break in the spectrum. The inertial range does shrink
since it is already at high k and therefore close to the
dissipation range. In fact for plasma beta greater than
one the ion Larmor radius would wash out the ion inertial
scale.

The spectra obtained from the second root (α = εk)
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Fig. 7 Power spectra (log-log scale) of the kinetic energy den-
sity WG(k) and the magnetic energy density MG(k) de-
rived from the generalized helicity invariant HG with Hall
effect for α− root.

corresponding to the whistler mode would clearly be dif-
ferent. We find that the total energy invariant furnishes
WE ∝ k−3,ME ∝ k−1 and the generalized helicity invari-
ant furnishes WG ∝ k−7/3,MG ∝ k−1/3. Thus the mag-
netic spectrum corresponding to the whistler root has no
steepend branch and thus cannot account for the observed
magnetic spectrum. Besides the whistler waves undergo
much stronger damping than the Alfvénic waves and may
not be a major contributor to the solar wind turbulence.
The whistler spectrum of k−7/3 has been observed in the
simulations of Dastgeer and Shukla [12]. This spectrum is
not identified in the solar wind turbulent spectrum but it
may contribute towards particle acceleration.

Fig. 8 Power spectra (log-log scale) of the kinetic and the mag-
netic energy density fluctuations including Hall effect.

4. Power Spectra of Density Fluctua-
tions in Hall-MHD†
If the spectra of the kinetic and the magnetic fluc-

tuations are different in HMHD then which would carry
the passive density fluctuations? In order to answer this
question let us look at the induction Eq. (5) which shows
that the magnetic field is frozen to the electrons. Thus
one would conclude that the electron density fluctuations
would be frozen to the magnetic field fluctuations and
would have the same spectrum as the magnetic field. An
inspection of the induction Eq. (7) shows that the magnetic
field is not frozen to the ions and the ions make the ma-
jor contribution to inertia. Thus one could conclude that
the ion density fluctuations would be carried by the veloc-
ity field fluctuations and would have the same spectrum
as the velocity field. So, the electron and the ion density
fluctuations have different spectral distributions. The entire
picture is presented in Fig. 9. This raises the issue of the
quasineutrality which should be maintained at each spatial
scale. One may surmise that the different spectral distri-
butions of the electron and the ion density may give rise
to space charge effects and the ensuing ambipolar diffu-
sion might wipe out the differences and the resultant dis-
tribution would be closer to that of the ions. However this
would violate the frozen-in condition of the electrons and
the magnetic field. One may bypass the issue by conclud-

†
The tracking of the magnetic spectrum by the electron density spec-

trum is essentially a statistical form of pressure balance between the elec-
tron thermal and the magnetic pressure. Similarly the tracking of the
kinetic energy spectrum by the ion density spectrum is essentially a statis-
tical form of pressure balance between the ion thermal and the dynamical
pressure. This furnishes, for equal electron and ion densities, equal elec-
tron and ion temperatures in the Alfvenic limit and unequal temperatures
in the presence of the Hall effect.
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Fig. 9 Power spectra (log-log scale) of the electron and the ion
density fluctuations including Hall effect.

ing that the plasma densities cannot be treated as passive
scalars. The presence of a third species providing a neu-
tralizing background can offer another way of permitting
varied distributions of passive electron and the ion density
fluctuations.

5. Conclusion
It has been shown that the observed spectral dis-

tributions of the velocity, the magnetic and the density
fluctuations in the solar wind can be modeled within
the framework of the Hall magnetohydrodynamics
using the dimensional arguments of the Kolmogorov
hypotheses. The Hall effect is particularly needed
to account for the high k end of the spectra. The k
dependent relation between the velocity fluctuations
and the magnetic field fluctuations arising from the
Hall-MHD waves results in different spectra for the
fluctuations. Additionally, the spectra for the electron and

the ion density fluctuations, treated as passive scalars, also
differ at the high k end, again a consequence of the two
fluid treatment. The spectrum of the electron density fluc-
tuations steeper than the Kolmogorov spectrum at the ion
inertial scale has been inferred from the interplanetary
scintillation studies [13]. The spectrum of ion density fluc-
tuations could be inferred from the plasma wave in situ
measurements. The issue of the quasineutrality awaits a
more detailed investigation. Several other consequences
of the foray into the two-fluid treatment such as the inclu-
sion of compressibility and the ensuing wave modes and
anisotropies need to be investigated.
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