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We develop a three-dimensional electromagnetic PArticle Simulation code for investigating driven Magnetic
reconnection in an Open system from the kinetic view-point (PASMO). In this paper, we advance a new model
for the upstream and downstream boundaries. We succeed in achieving the frozen-in condition for both electrons
and ions with high accuracy at the upstream boundary, while we can decrease unphysical noise at the down-
stream boundary. We compare the simulation results of long and short-simulation boxes to check whether the
downstream boundary model fulfills its function. The results of the short-simulation box effectively mimic those
of the long-simulation box. Using the new boundary model, we succeed in increasing the accuracy of simulation.
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1. Introduction
Collisionless magnetic reconnection is widely consid-

ered to play an important role in energetically active phe-
nomena in high-temperature plasmas, such as solar flares,
planetary magnetospheres, fusion devices, and astrophys-
ical plasmas. Magnetic energy is rapidly converted to ki-
netic energy, and global magnetic configurations change
because of magnetic reconnection. In spite of much re-
search from observations [1,2], experiments [3,4], and the-
ory and simulations [5, 6], many basic aspects of the de-
tailed mechanisms of reconnection remain poorly under-
stood.

Magnetic reconnection is generally categorized as
driven and spontaneous (undriven) reconnections. In
driven reconnection, plasma inflow and magnetic flux are
supplied from upstream boundaries and drive reconnec-
tion, while in spontaneous reconnection, internal instabil-
ities such as collisionless tearing instability [7–13] trigger
reconnection without energy inflow from the boundaries.

A magnetohydrodynamics (MHD) simulation [14–17]
is adopted to study the global phenomenon of reconnection
under an assumption of electric resistivity. This approach
can deal with reconnection phenomenologically, but can-
not explain the origin of the electric resistivity. On the
other hand, fully kinetic electromagnetic particle-in-cell
(PIC) simulation is a powerful tool for investigating re-
connection, because it can use a first-principle approach to
describe the dynamics in the vicinity of the X-point. The
first-principle approach means that both electrons and ions
are treated as particles under the basic equations without
any assumptions, except the initial and boundary condi-
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tions. In the reconnection process, the ideal MHD con-
dition breaks down in the reconnection region, where the
magnetic field is dominantly dissipated. To estimate the
structure and stability of the reconnection region, fully PIC
simulation is indispensable.

Several full PIC simulations employed a periodic
boundary condition along the direction of reversed mag-
netic field [18–23]. If a periodic boundary condition is
adopted, it is impossible to ascertain whether reconnec-
tion can achieve a steady state, because unphysical col-
lisions between oppositely propagating reconnection jets
occur through the periodic boundary. To obtain physically
meaningful results by means of a full PIC simulation un-
der a periodic boundary condition, the simulation domain
must be sufficiently large, because it must run long enough
for the artificial recirculation to approach the reconnection
region during the time interval of interest. Thus, this model
is not appropriate for studying evolution of the reconnec-
tion system over a long timescale.

Although a very large periodic system was used,
Fujimoto et al proposed a two-and-a-half dimensional
electromagnetic particle code using an adaptive mesh re-
finement (AMR) technique to investigate large-scale be-
havior of magnetic reconnection [23, 24]. The AMR tech-
nique subdivides and removes cells dynamically in accor-
dance with a refinement criterion, and it can achieve high-
resolution simulations of phenomena that locally include
micro-scale processes. The AMR technique as well as the
open boundary condition is useful for long-timescale re-
connection simulations.

To prevent unphysical recirculation, it is crucial to de-
velop an appropriate open boundary model as the down-
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stream boundary for full PIC simulations. Our group has
already investigated reconnection processes, turning our
attention to the importance of the open boundary condi-
tion using the PArticle Simulation code for Magnetic re-
connection in an Open system (PASMO) code [25–33].
It was shown for the first time that a steady-state recon-
nection was realized in the long-time scale evolution of
driven reconnection in a two-dimensional (2-D) open sys-
tem [25–27]. Several other types of open boundary mod-
els have been proposed thus far for investigating driven or
spontaneous reconnection as well [34–38]. In our previous
studies [28,31,32,39], we improved the 2-D full PIC simu-
lation code in an open system to a three-dimensional (3-D)
code. However, the frozen-in condition is slightly broken
at the upstream boundary, and unphysical disturbance is
faintly generated at the downstream boundary.

In this paper, we propose an advanced model for the
driven and open boundary conditions to improve the pre-
cision of the simulation. In Sec. 2, we describe the basic
equations. In Sec. 3, we briefly discuss the initial con-
ditions. A detailed description and discussion of the ad-
vanced open boundary model are reported in Secs. 4, 5, and
6. In this discussion, we compare the results obtained from
the new and old models and check whether the new down-
stream model can effectively mimic a much larger system.
Finally, we present the summary and conclusions in Sec. 7.

2. Basic Equations
We use a 3-D explicit electromagnetic particle sim-

ulation code for the investigation of driven magnetic re-
connection [40]. The basic equations to be solved are the
equations of motion,

d(γkuk)
dt

=
qk

mk

(
E +
uk
c
× B
)
, (1)

dxk

dt
= uk, (2)

and the Maxwell equations,

1
c
∂B
∂t
= −∇ × E, (3)

1
c
∂E
∂t
= ∇ × B − 4π j, (4)

∇ · B = 0, (5)

∇ · E = 4πρ, (6)

where c is the velocity of light, and xk(t), uk(t), mk, and
qk are the position, velocity, rest mass, and charge of the
kth particle. The relativistic γ-factor of the kth particle is
defined by

γk = 1/
√

1 − (uk · uk)/c2. (7)

Current density j(x, t) and charge density ρ(x, t) are
calculated by taking a sum of values of all the particles,
that is,

j(x, t) =
N∑

k=1

qkuk(t)
c

S [x − xk(t)], (8)

Fig. 1 Schematic illustration of simulation box.

ρ(x, t) =
N∑

k=1

qkS [x − xk(t)], (9)

where N is the total number of particles and S (x) is the
form function of particles. The form function is expressed
by a triangle with the base length equal to two times the
grid separation.

Only the first two Maxwell equations (Eqs. (3) and
(4)) are completely independent. The other two (Eqs. (5)
and (6)) always hold if they are initially satisfied. How-
ever, j and ρ given by Eqs. (8) and (9) do not exactly satisfy
the continuity equation in numerical simulation because of
the applicability limits of numerical techniques, such as a
finite-sized mesh and weighting [40]. Thus, in our sim-
ulation model, we solve the first two Maxwell equations
(Eqs. (3) and (4)) for E and B, and then E is adjusted using
the correction of the electrostatic part obtained by Boris-
type correction [40] to satisfy Eq. (6).

The physical quantities are normalized as follows:
m = m̃me, q = q̃e, t = t̃/ωce, v = ṽc, x = x̃c/ωce,
E = Ẽmecωce/e, and B = B̃mecωce/e, where me is the
electron mass, e is the electron charge, and ωce is the elec-
tron gyration frequency. We consider a rectangular par-
allelepiped in (x, y, z) space as a simulation box, whose
length is 2xb, width is 2yb, and height is 2zb (Fig. 1).

3. Initial Conditions
The initial condition of the magnetic field, Bx, pres-

sure P, current density jz and particle density np is given
by a one-dimensional Harris-type equilibrium [41] as

Bx(y) = B0 tanh(y/L), (10)

P(y) = (B2
0/8π)sech2(y/L), (11)

jz(y) = −(cB0/4πL)sech2(y/L), (12)

np(y) = np0/ cosh2(y/L), (13)

where a neutral sheet is located at y = 0, B0 and np0 are
constants, and L is the spatial scale. The velocity distribu-
tion of particles is a shifted Maxwellian, and the uniform
average velocity of an ion is equal to the diamagnetic drift
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velocity. In this paper, the ion-electron temperature ratio is
taken as Ti0/Te0 = 1 at the initial time.

The particle density described by Eq. (13) becomes
very small in the region far from the current sheet, and
the number of particles per cell in this region is extremely
small compared with that in the current sheet. If the num-
ber is small (< 10), numerical noise is generated. To re-
duce numerical noise near the boundary layer, we assume
background plasmas with no average velocity and uniform
temperature. Two types of distribution of background plas-
mas are considered, uniform and non-uniform [42]. In the
case of uniform distribution, ion-ion kink instability can be
caused by the velocity difference between the foreground
and background plasmas in the current sheet [43]. To avoid
the growth of such instability, we adopt a non-uniform
background,

nb(y) = nb0{1 − 1/ cosh2(y/L)}, (14)

where nb0 is a constant. Although a weak pressure im-
balance appears in this non-uniform background profile, it
is quickly justified without any significant modification of
the current sheet structure. In this paper, the value of ratio
nb0/np0 is 0.2 at the initial time.

4. Boundary Conditions
Let us consider collisionless reconnection in an open

system that is subject to an external driving source. It
is necessary to develop two boundary models for such a
system, i.e., an upstream boundary (y) and downstream
boundary (x). At the upstream boundary, plasma and mag-
netic flux are supplied into the system, while plasma can
move in and out freely at the downstream boundary ac-
cording to the dynamical evolution of the system. A pe-
riodic boundary condition is applied in the z-direction for
both fields and particles.

4.1 Boundary conditions of fields
The conditions of the field quantities for the driven

and open boundary conditions are given as follows. The
external field Ezd(x, t) is programmed to evolve from zero
to a constant value during an early period, as shown in
Fig. 2. The field Ezd is set as zero at t = 0 and gradu-
ally increases, predominantly in the center region of the
simulation box (x = 0) early in the simulation. The width
of the region where Ezd predominantly increases is also
gradually expanded. The field Ezd develops on the entire
boundary after it reaches a constant value E0 at the center
point, and eventually reaches E0 on the entire boundary.
After an early phase (tωce = 335 in this paper), Ezd has a
constant value E0, which is a necessary condition for a re-
connection system to evolve toward a steady state [26, 27].
Boundary conditions for the remaining field quantities at
upstream boundary are as follows: Ex = 0 and ∂yEy = 0 at
y = ±yb. At the downstream boundary x = ±xb, the field
quantities, ∂xEx, ∂xBy and ∂xBz are zero. These condi-

Fig. 2 The spatial profiles of the external driving electric
field at the upstream boundary at the times tωce =

0, 34, 67, 101, 168, 235 and 335.

tions enable the y and z components of the magnetic field
to change, which is a necessary condition for a magnetic
island with instability along the z-direction to move freely
through the boundary. The remaining components of the
field quantities are obtained by solving the Maxwell equa-
tions at the boundary.

4.2 Boundary conditions of particles
The free boundary condition of particles is impor-

tant in constructing the open boundary model [25, 26, 39].
Although noise problems near the system boundary are
inevitable in PIC simulations, we propose an advanced
model to reduce the noise. Using a new model of the up-
stream boundary, the frozen-in condition is satisfied at the
boundary for both ions and electrons with high accuracy.
At the downstream boundary, the particle distribution be-
comes smooth, and the deviation from the frozen-in condi-
tion due to unphysical noise is suppressed at a lower level.
We describe the previous and improved new models of the
boundaries in this section, and compare the simulation re-
sults obtained from the two models in Sec. 5.

4.2.1 Upstream boundary

We suppose that the upstream boundary is an ideal MHD
region, where both ions and electrons are frozen into the
magnetic field. Thus, the plasma inflow is driven by E× B
drift due to the driving electric field Ezd(x, t) imposed at
the upstream boundary. The distribution of input particles
is a shifted Maxwellian with a constant temperature and an
average velocity uu that is given as

uu =
Eu × Bu

B2
u
, (15)

where subscript u represents the upstream boundary. Both
electrons and ions are assumed to be frozen in the mag-
netic field in the upstream region, and the one-dimensional
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Fig. 3 Schematic illustration of the previous model of the upstream boundary for particles and the probability function of velocity.
Distribution of particles: (a) at t = mΔt, (b) after the pusher process, and (c) at t = (m+1)Δt. Open circles are particles, and closed
circles are supplied particles. Dashed-line circles are removed particles.

inflow along the y direction is supplied to the system from
an external region. Thus, the increase of mass flux is pro-
portional to that of magnetic flux at the upstream bound-
ary. Then, the change in the number density nu at the input
boundary can be expressed by the following relation:

nu = n0
u

Bu

B0
u
, (16)

where superscript 0 indicates for the initial time.
In the previous model, the plasma is supplied from the

upstream boundaries to the simulation domain at each time
step with inflow velocity uu and number density nu. Fig-
ure 3 schematically shows the particle update procedure
in the previous model. Particles (open circles) near the
upstream boundary are supposed to exist as in Fig. 3 (a)
at t = mΔt, where m is an integer. At the next step
[t = (m + 1)Δt], particle positions are updated accord-
ing to the Newton-Lorentz equation (Eq. (1)), as shown in
Fig. 3 (b). This procedure is called the pusher process [40].
Several particles near the upstream boundary move toward
the center of the system by E × B drift, and the num-
ber density decreases near the boundary. Then, particles
(closed circles) are supplied through the upstream bound-
ary, as shown in Fig. 3 (c), to conserve the number density
nu. If particles satisfy the shifted Maxwellian fM(v) at the
upstream boundary, particles with positive velocity come
into the system, while those with negative velocity are lost
from the system.

The probability of particles passing across the bound-
ary surface in one time step is given as fM(v)vΔt (see
Fig. 3). Because the probability depends on time and
space, that is, because the number density at the input
boundary and the averaged inflow velocity change tempo-
rally and spatially (Eqs. (15) and (16)), we have to generate
a particle ensemble that satisfies the probability function

at each time step and at each spatial position. However,
to achieve high accuracy in numerical simulation by this
method, many more particles than we can treat using a su-
percomputer are required. To avoid this difficulty, in the
previous model, we expand the probability function into a
function independent of the flow velocity uu and some al-
gebraic multiplier of uu by assuming that uu � vT, where
vT is the thermal velocity. This process enables us to use a
reservoir consisting of a huge number of particles for par-
ticle loading, independently of space and time.

If the total number of inflow particles to be loaded to
each cell at each time step is small, the particles become
a source of unphysical noise, which breaks the frozen-in
condition at the upstream boundary, as shown in Sec. 5.
For example, the average number of particles loaded per
cell is about 2 in the 3-D case. Because it is difficult to in-
crease the number of particles in large-scale simulations
because computer resources are limited, and the loaded
particles are also distributed in the z direction, the number
becomes small. Even if the loaded particles are sampled
randomly from the reservoir of the particle ensemble, such
a small number of particles introduces noise. To load a
sufficiently large number of inflow particles even with lim-
ited computer resources, we develop a new model that can
reduce unphysical noise at the upstream boundary, as ex-
plained in the next paragraph. In the 2-D case, the number
of inflow particles at the upstream boundary is large, be-
cause it is possible to set the number of particles per cell
to be sufficient over the entire simulation box. Thus, this
problem is not so severe in the 2-D case.

Next, we explain the improved new model of the up-
stream boundary, which we develop in this study. Figure 4
schematically illustrates the processes of the new model.
First, let us define the Y boundary cells. They are located
at yb − Δy < |y| < yb, where Δy is the grid size along the y
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Fig. 4 Schematic illustration of the new model of the upstream boundary for particles and the velocity distribution function. Distribution
of particles: (a) at t = mΔt, (b) after the pusher process, (c) step 1, and (d) step 2 of the new model at t = (m + 1)Δt.

direction. The cell is a parallelepiped whose length, width,
and height are nΔx, Δy, and 2zb, respectively. In this pa-
per, an n value of 8 is adopted. Figure 4 (a) shows the po-
sition of particles near the upstream boundary at t = mΔt.
The pusher process updates them, as shown in Fig. 4 (b). In
step 1, the particles in the Y boundary cells are removed, as
shown in Fig. 4 (c). The dotted circles in Fig. 4 (c) are the
removed particles. In each Y boundary cell, uu and nu are
calculated from Eqs. (15) and (16), respectively. Then, in
step 2, particles with nu and uu (closed circles in Fig. 4 (d))
are newly loaded there based on the quiet-start technique
[40]. The velocity distribution of the newly loaded parti-
cles rigorously obeys a shifted Maxwellian with constant
temperature for every time step in each Y boundary cell.
The spatial distribution of the loaded particles is uniform,
and both electrons and ions are loaded at the same posi-
tions. Unequal numbers of electrons and ions are some-
times removed in step 1. In that case, the number of elec-
trons or ions that are loaded is adjusted to satisfy charge
neutrality in the entire system. If different numbers of elec-
trons and ions are loaded, in some positions only electrons
or ions are loaded, and an electrostatic field is locally gen-
erated at the upstream boundary. However, the difference
in the numbers is small, and the generated electrostatic
field is negligible because the frozen-in condition is pre-
served at the upstream boundary.

4.2.2 Downstream boundary

At the open downstream boundary, particles can not only

leave but also enter the system across the boundary. Infor-
mation about outgoing particles can be obtained directly
by observing their motion at the boundary. The problems
in the downstream boundary condition of particles are how
many particles come into the system and how to assign the
positions and velocities of these incoming particles. For
the boundary condition of particles here, we assume that
the physical state outside is the same as that in the bound-
ary region. In other words, this assumption corresponds
to a zero normal derivative condition, which is generally
applied to the fluid moments in MHD [14, 15], Hall MHD
[16, 17], and hybrid [35] simulations of reconnection. In
these fluid simulations, the zero normal derivative condi-
tion is used for all variables (e.g. ∂/∂x = 0 and ∂/∂y = 0).
However, a PIC simulation has infinite information, and
many ambiguities are generated. Moreover, the veloc-
ity distribution function becomes non-Maxwellian in the
downstream region as a result of the reconnection process.
Accordingly, it is impossible for all quantities to satisfy the
zero normal derivative condition and assume that the dis-
tribution of incoming particles is Maxwellian. At the least,
we have to select the boundary condition that the zeroth,
first, and second momenta should satisfy. In this section,
we explain the previous and new models of boundary con-
ditions under this assumption.

Figure 5 schematically illustrates the free boundary
condition at a downstream boundary for particles that we
adopted in the previous model. In this model, we make two
assumptions. First, we assume that the net number flux of
ions at the downstream boundary is the same as that of
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Fig. 5 Illustration of the previous downstream model, where
Nnet, Nout, N in, and N2 are the net number of outgoing
particles, the numbers of outgoing and incoming parti-
cles through the boundary, and the number of particles
crossing inward through surface 2.

electrons, which is equal to the average net number flux
in region I in Fig. 5. Second, we assume that the particle
distribution function at position 1, that is, the downstream
boundary, is the same as that at position 2. The details of
the process in this model are as follows. We calculate the
number of incoming particles across the open downstream
boundary. The average particle velocity vIx and number
density nI in region I (Fig. 5) are calculated. Next, we ob-
tain the net number of outgoing particles passing across the
boundary during one time step Δt in the system,

Nnet = −nIvIxΔtS d, (17)

where S d (= 2yb2̇zb) is the area of region I. According to
the charge neutrality condition, the net numbers of elec-
trons and ions are the same. Thus, the numbers of incom-
ing electrons and ions to the system are given as

N in
e = Nout

e − Nnet, (18)

N in
i = Nout

i − Nnet. (19)

Next, the positions and velocities of incoming particles
have to be assigned. We have already assumed that the
physical state outside is the same as that in region I. In
other words, the particle distribution function outside is the
same as that in region I. Thus, the positions and velocities
of incoming particles can be defined using the information
for particles crossing surface 2 from left to right (Fig. 5).

Figure 6 schematically shows the process of the new
model for the open boundary condition of particles at the
downstream boundary. First, let us define the X boundary
cells. They are located at xb − Δx < |x| < xb, where Δx is
the grid size along the x direction and corresponds to the
first region in Fig. 6 (a). The cell is a parallelepiped whose
length, width, and height are Δx, 2yb and 2zb, respectively.
At t = mΔt, the particles near the downstream boundary
exist, as shown in Fig. 6 (a). According to the pusher pro-
cess, the positions of particles are updated at t = (m+ 1)Δt
(Fig. 6 (b)). In step 1, the particles in the X boundary cell
and outside the simulation box are removed; the removed
particles are shown as dotted circles in Fig. 6 (c). To real-
ize the assumption that the physical quantity outside is the
same as that in the boundary region, we make the same par-
ticle distribution function in the X boundary cell as in the

Fig. 6 Schematic illustration of the new model of the down-
stream boundary for particles. Distribution of particles:
(a) at t = mΔt, (b) after the pusher process, (c) step 1, and
(d) step 2 of the new model at t = (m + 1)Δt.

n-th region, which is the (n−1)-th neighbor of the X bound-
ary cell. The positions and velocities of particles (closed
circles in Fig. 6 (d)) in the X boundary cell are defined us-
ing the information for particles in the n-th region (for ex-
ample, n = 5). Thus, in this step, all the particles in the
X boundary cell are replaced by those in the n-th region.
Unequal numbers of electrons and ions are sometimes re-
moved in step 1. In that case, the number of electrons or
ions are loaded in the X boundary cell is adjusted to satisfy
charge neutrality in the entire system. If particles move
from the (n − 1)-th region to the n-th region, the velocities
and positions of these particles in the n-th region can be
used to specify the information on newly incoming parti-
cles from the downstream boundary in the X boundary cell.
In this model, the variation of particle quantities along the
x direction nearly vanishes at the boundary. Accordingly,
the zero normal condition is realized there.

We compare the results of the new and previous mod-
els in Sec. 5 and show the advantages of the new model in
Sec. 6.
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5. Comparison of New and Old Mod-
els
In this section, we compare the time evolution of mag-

netic reconnection in the new and previous boundary mod-
els (C1 and C2 cases, respectively, in Table 1) in 3-D sim-
ulation. Simulation parameters are as follows: The mass
ratio mi/me is 100, and the driving field Ez0 is −0.04B0,
where B0 is a constant. The scale length of current layer
L is 0.787ρi at the initial time, where ρi is the ion Larmor
radius defined using magnetic field B0. The thermal veloc-
ities of electrons and ions are 0.268c and 0.0268c, respec-
tively. The ratio of the plasma frequency to the gyrofre-
quency for electrons ωpe/ωce is 2, and the time step ωceΔt
is 0.067.

5.1 Upstream
Figure 7 shows the time evolution of (a) the recon-

nection electric field Ez and (b) the current density Jz at
the reconnection point. The solid and dashed lines in-
dicate the new (C1) and previous (C2) models, respec-
tively. Let us compare the physical quantities of C1 and
C2 until the reconnection electric field Ez starts increasing
(0 < ωcet < 400). During this time, the driving electric
field imposed at the upstream boundary penetrates into the
current sheet because of particle kinetic effects. When the
electric field reaches the neutral sheet, collisionless recon-
nection is triggered [28]. In ωcet < 400, the time evolu-
tion of the physical quantities of the new model (C1) is al-
most the same as that of the previous model (C2). After Ez

reaches the minimum value, the difference in each phys-
ical quantity between C1 and C2 increases. In the early
time before Ez reaches the minimum value, the boundary
condition does not influence the physics at the reconnec-
tion point because the reconnection point is far from the
boundary. For this reason, the time evolution of the physi-
cal quantities is not so different between the new and pre-
vious models early in the simulation.

Figures 8 and 9 show the contour plots of the frozen-
in condition E + u × B for electrons and ions, respectively,
under the previous and new conditions. Figure 10 shows
the profiles of E + u × B along the y direction passing
the X point. When the frozen-in condition is satisfied, the
quantity E + u × B becomes zero. The figures show that

Table 1 Simulation parameters. 2xb, 2yb, 2zb are the size of simu-
lation box. ρi is the ion Larmor radius. Nx, Ny, and Nz are
the numbers of grids along the x, y, and z axes, respec-
tively. Np0 is the number of the particles that compose the
Harris equilibrium at the initial time.

2xb, 2yb, 2zb (/ρi) Nx, Ny, Nz Np0 Boundary
C1 12.7, 6.35, 9.60 130,129,130 32million new
C2 12.7, 6.35, 9.60 130,129,130 32million previous

C3 (short) 25.4, 6.35, 2.40 258,129,36 16million new
C4 (long) 102, 6.35, 2.40 1026,129,36 64million new

E + u × B is almost zero near the upstream boundary for
both electrons and ions in the new model. On the other
hand, E + u × B remains finite in the previous model.

From Figs. 8, 9, and 10, we can explain why Ez and Jz

show different tendencies in the previous and new mod-
els after Ez reaches the minimum value. In the previ-
ous model, when mild unphysical noise is generated near
the upstream boundary, as shown in the figures, it is car-
ried toward the central region with incoming plasma flow
and disrupts the physics of reconnection after it reaches
the reconnection point. In the new model, on the other
hand, the frozen-in condition is satisfied with high accu-
racy, and unphysical noise is not generated in the region of
the upstream boundary. Therefore the difference in physi-
cal quantities increases after reconnection occurs.

Fig. 7 Time evolution of (a) the reconnection electric field Ez,
and (b) the current density Jz. Solid and dashed lines
show the cases of C1 and C2, respectively.
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Fig. 8 Contour plots of E+ u× B of electrons in the xy plane at ωcet = 492. Left and right figures show the cases of the new and previous
models, respectively. Top, middle, and bottom panels show the x, y, and z components of E + u × B, respectively. Horizontal axis
is x, and vertical axis is y. Right and bottom side panels show the profile along the y direction at x = 0 and along the x direction at
y = 0, respectively.

The reasons that the accuracy near the upstream
boundary increases in the new model compared with the
previous one are as follows. In the previous model, the
number of particles supplied from the upstream boundary
in one time step is small in 3-D simulation, for example, 1
or 2 per cell at most. Accordingly, the distribution formed
by the supplied particles becomes disordered. In the pre-
vious model, moreover, the velocity distribution function
of the supplied particles is obtained under the assumption
uu � vT. However, the flow velocity of ions induced by
the E × B drift is marginally less than the ion thermal ve-
locity, so the assumption is not appropriate. For these rea-
sons, it is considered that unphysical noise is created and
breaks the frozen-in condition at the upstream boundary in
the previous model. Under the new boundary, on the other
hand, all the particles in all boundary cells at the upstream
boundary are exchanged at every time step for refreshed
particles, whose distribution is determined by the quiet-
start technique [40] so as to satisfy the shifted Maxwellian
rigorously. In this way, particles with an orderly distribu-
tion are loaded, and the particles at the upstream boundary
are refreshed at all times. As a result, the frozen-in condi-
tion is always satisfied at the upstream boundary with high

accuracy even in 3-D simulation.

5.2 Downstream
In this subsection, we compare the results obtained

from the new and previous downstream models. Figures 8
and 9 show that the contour plots of the y and z components
of E + u × B are smooth, while the x component is disor-
dered at the downstream boundary for both electrons and
ions in the previous model. The positions and velocities of
incoming particles through the downstream boundary are
obtained from the information on particles crossing sur-
face 2 from left to right (Fig. 5) in the previous model. The
number of supplied incoming particles per cell is small in
the case of 3-D simulation, and thus, numerical noise is
generated. In the new model, on the other hand, the infor-
mation for all particles in the boundary region (X boundary
cell) is replaced by that in the n-th neighbor cell at each
time step. As a result, incoming particles are not directly
dealt with as the particles supplied from the downstream
boundary as in the previous model. Accordingly, numeri-
cal noise is not generated in the downstream boundary in
the new model.

In this paper, we compare the 3-D simulation results
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Fig. 9 The same figure as Fig. 8 but of ions.

Fig. 10 Profiles of E + u × B along the y direction passing X point for (a) electrons and (b) ions in case C1, and (c) electrons and (d) ions
in case C2. Solid, broken, and dotted lines show x, y, and z components, respectively.
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obtained from the new and previous models under the same
conditions, e.g., the same number of particles per cell.
Even in the previous model, there is no difficulty in satis-
fying the frozen-in condition in the upstream region or the
smoothness of the physical quantities in the downstream
region, when the number of particles per cell is sufficient.
However, it is difficult to increase the number in large-
scale simulations because computer resources are limited.
Accordingly, it is important to develop models, such as
this new model, which can reduce unphysical noise at the
boundary, even though the number is small. In the case of
2-D simulation using the previous model, the numbers of
inflow particles supplied from the upstream boundary and
incoming particles through the downstream boundary are
large, because the number of particles per cell is adequate.
Thus there is no problem in 2-D simulation with the previ-
ous model.

6. Validity of Downstream Model
Next, we compare the simulation results for short and

long simulation boxes (C3 and C4 in Table 1) to check
the validity of the new downstream model. A very long
current sheet (102ρi) along the outflow direction (x) is set
up in the long-simulation box, while a short current sheet
(25.4ρi) is used in the short-simulation box. Driven recon-
nection takes place at the center of the simulation box for
both the long and short simulation boxes. In the down-
stream model, the positions and velocities of particles in
the X boundary cell are defined using the information for
particles in the second region in this test simulation. If
the downstream boundary model is effective, the results of
the short-simulation box should mimic those in the corre-
sponding part of the long-simulation box.

We first examine the time evolution of the current den-
sity Jz and electric field Ez at the X point. Figure 11 shows
that both Jz and Ez in the short-simulation box are almost
the same as in the long-simulation box. This means that
the time evolution of reconnection dynamics at the X point
of the two cases is in good agreement. Figure 12 shows
snapshots of the magnetic field at tωce = 680. The mag-
netic field structures in the cases of the short and long sim-
ulation boxes are consistent. Next, let us compare several
physical quantities. Figures 13 and 14 show the magnetic
flux φ, flow pattern u, and temperature T at tωce = 805
in the cases of long and short simulation boxes. Here the
magnetic flux φ is defined such that B⊥ = ẑ × ∇φ, and is
calculated from the averaged values B̄x and B̄y along the z
direction, where ⊥ denotes the x and y components. Ev-
ery variable shows the same pattern. Finally, we compare
them quantitatively. Figure 15 displays the profiles of the
frozen-in condition E+u×B along the x direction passing
the X point. The positions of peaks and the tendency of
every quantity in the case of the short simulation box are
in good agreement with those of the long simulation box.

All of these data show that the new downstream

Fig. 11 Time evolutions of (a) current density Jz and (b) electric
field Ez at the X point, where solid and broken lines show
results for cases C3 and C4, respectively.

boundary model works very well at least until tωce = 800.
To learn whether reconnection is steady or non-steady, we
need to perform the simulation a factor of 10-30 times
longer. Information on particles in the second neighbor
cell is used to specify the newly loaded particles in the
X boundary cell in this test simulation. Since the second
neighbor cell is a near neighbor to the X boundary cell,
and the newly incoming particles are just copies of parti-
cles that are already in the near cell, it is considered that a
small perturbation near the boundary can feed back upon
itself. This will introduce unphysical correlations at longer
time-scales. To avoid this feedback, it will be necessary to
set the sampling region far from the X boundary. In our
next paper, we will discuss the dependence on the position
of the sampling region of information on particles in the X
boundary cell, and the validity of this downstream model
over more physically interesting time scales.

7. Summary and Conclusions
A new open boundary model for 3-D electromagnetic

particle simulation is developed to investigate magnetic
reconnection in an open system. Because a very large
CPU memory size is needed for the simulation, this sim-
ulation code is also programmed to work effectively on a
distributed memory and processor computer system with a
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Fig. 12 Snapshot of magnetic structure at tωce = 680. Top and bottom figures show the results for the short and long simulation boxes,
respectively. Color isolines on top plane show the magnetic flux φ, and isosurfaces and color contours on the bottom plane show
B2

x + B2
y.

distributed parallel algorithm. PASMO is parallelized with
High Performance Fortran [39]. For data layout, all field
data are duplicated in each parallel process, but particle
data are distributed among them [44]. We invent an algo-
rithm for the open boundary of particles, in which an op-
eration for outgoing and incoming particles is performed
in each processor, and the only reduction operation for the
number of particles is executed during data transfer. This
adequate treatment makes the amount and frequency of
data transfer small and the load balance among processes
relevant.

An open boundary condition is essential for long-term
collisionless reconnection behaviors such as steady recon-
nection and intermittent reconnection [26]. A periodic

boundary condition has been used thus far in the outflow
direction. However, it generates an artificial flow from the
downstream boundary and distorts the physics of recon-
nection for a long time. The problem of the open boundary
model is how particles enter and leave the system. Sev-
eral open boundary models have already been proposed
as a downstream boundary model [25–27, 34–38]. Let us
compare our model with them. Ding et al [34] used 2-D
PIC simulation to investigate driven reconnection. Out-
going plasma flow generated during magnetic reconnec-
tion went freely from the simulation domain through the
downstream boundary. Pritchett et al [36, 45] employed a
2-D PIC model for the case of driven reconnection. Their
open boundary for the particles meant that particles cross-
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Fig. 13 Magnetic field structure for the short (top) and long (bottom) simulation boxes. In the case of long simulation box, the region
corresponding to the short simulation box is enlarged. Color isolines show the magnetic flux φ and color contours show B2

x + B2
y.

ing the downstream boundary were removed from the sys-
tem, and that new particles were injected into the system
at a constant rate based on a thermal Maxwellian distribu-
tion. Krauss-Varban et al [35] used inflow-outflow bound-
ary conditions, where plasma is free to flow in or out, in
2-D and 3-D electromagnetic hybrid codes. A zero gra-
dient was maintained in the first two momenta of the ion
distribution in an approximate manner. Daughton et al [37]
assumed that the distribution function in the region near the
boundary was approximately given by a quadratic form.
Using this approximated distribution function, they ob-
tained the incoming flux of particles with normal velocity,
the total number of particles injected from the boundary,
and transverse velocity components. They studied spon-
taneous reconnection under this condition in 2-D simula-

tion. Klimas et al [38] also assumed that particle distribu-
tions have zero normal derivatives at the boundary. In their
method, the position and velocity of each particle is stored
in the column at the boundary. If a particle moves from
this column to the next inside column, an identical particle
outside of the boundary is assumed to have moved into the
column at the boundary. This method is similar to our pre-
vious model in that they used the information of particles
crossing the surface as the positions and velocities of in-
coming particles [25–27]. They also studied spontaneous
reconnection in a 2-D simulation by this method.

In all the models including Pei’s model [25–27], the
method of dealing with outgoing particles is the same; that
is, when a particle crosses a boundary in the outward di-
rection, it is permanently lost. It is important to estimate
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Fig. 14 Flow pattern and temperature profile in the (x, y) plane. Left and right figures show the cases of short and long simulation boxes,
respectively. Top and bottom show the cases of electrons and ions, respectively. In the case of the long simulation box, the region
corresponding to the short simulation box is enlarged.

Fig. 15 Profile of E + u × B along the x direction for (a) electrons and (b) ions for C3, and (c) electrons and (d) ions for C4. Solid,
dashed, and dotted lines show x, y, and z components of E+ u× B, respectively. In the case of the long simulation box, the region
corresponding to the short simulation box is enlarged.
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the number and distribution of incoming particles, instead
of enforcing a boundary condition on the momenta as in
MHD, Hall MHD, and hybrid simulations [14–17, 35]. In
the model of Ding et al [34], particles incoming through
the downstream boundary were not considered. Accord-
ingly, an inward flux was not considered and a zero normal
derivative condition was not preserved there. The model
of Pritchett et al [36, 45] assumed that incoming particles
came through the boundary at a constant rate based on a
simple Maxwellian distribution. This model cannot es-
timate a net flux correctly at the downstream boundary.
Krauss-Vaban et al [35] and Daughton et al [37] approxi-
mated the distribution function near the boundary. When
these approximations are exact, the inward flux is calcu-
lated correctly. On the other hand, although our model
does not assume a specific form of distribution function
at the downstream boundary, both the inflow and outflow
fluxes are estimated and the zero normal derivative condi-
tion is preserved, because the information for particles in
the X boundary cell is the same as that for those in its n-
th neighbor cell. Our model is much simpler than other
models, but it is effective, as shown in Sec. 6. It will be
interesting to compare their results in future to investigate
the influence of boundary conditions on the physics of re-
connection.
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