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Here we propose an algebraic analysis approach for multibody Coulomb interactions. The momentum trans-
fer cross section calculated by the algebraic approximation is close to the exact one. The CPU time required for
the algebraic approximation is only about 20 min using a personal computer, whereas the exact analysis requires
15 h to integrate the entire set of multibody equations of motion, in which all the field particles are at rest.
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1. Introduction
Since it is difficult to deal with multibody Coulomb

and gravitational [1] collisions, the current classical the-
ory considers them as a series of temporally-isolated bi-
nary Coulomb collisions within the Debye sphere. Let us
first briefly review a binary collision between ions. In the
center of mass coordinate (r, θ) space in the collision plane,
the test particle with a reduced mass of μ moves along a
hyperbola as

r (θ) =
b sin θ0

cos θ − cos θ0

[
cos θ
sin θ

]
(1)

with a relative velocity of

g (θ) =
g0

sin θ0

[
cos θ0 sin θ

1 − cos θ0 cos θ

]
, (2)

from which the velocity change in the binary Coulomb
interaction is given by Δg = 2g0 cos θ0ex. As shown
in Fig. 1, its scattering angle χ ≡ π − 2θ0 is given by
b = b0 tan θ0, where b is the impact parameter, b0 ≡
e2/4πε0μg2

0 corresponds to χ = π/2 scattering, and g0 is
the initial relative speed at r = ∞ and θ = −θ0.

The angular component of the equation motion gives
the well-known invariant of

r2 dθ
dt
= const. = bg0, (3)

and the radial component is given by

dgr

dt
=

g2
0b0

r2

(
1 +

b0

r
tan2 θ0

)
, (4)

where gr ≡ ṙ denotes the radial velocity. The first term in
the parentheses on the right hand side of Eq. (4) represents
the Coulomb force Fc ∝ r−2. For small angle scatterings
such as χ � 1, this force is much smaller than the second
term Fa, which scales as ∝ r−3 and results from the conser-
vation of angular momentum Eq. (3), since at the closest
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Fig. 1 Unperturbed trajectory r = r (θ) in an orbital plane. The
scattering center is at the origin. An impact parameter is
b = b0 tan θ0. Interaction region is inside the circle with a
radius r� = Δ�/2.

point r = rmin at θ = 0 in Eq. (1), we have

b0 tan2 θ0
rmin

� 2
χ
� 1. (5)

Thus the main force on the particle is not the Coulomb
force Fc, but Fa due to the conservation of angular mo-
mentum.

2. Algebraic Approximation for Two-
dimensional Multibody Interac-
tions
Since the r-dependence on Fa ∝ r−3 is steeper than

that on Fc ∝ r−2, the momentum change in μg is almost
solely due to Fa near r = rmin. As a consequence, the
exact hyperbolic trajectory Eq. (1) for the particle can be
approximated as a broken line with an impulse force of

μΔg = 2μg0 cos θ0ex (6)
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Fig. 2 Algebraic trajectory (broken line) and exact trajectory
(curved line) which is a part of a hyperbola. A Field par-
ticle (black circle) is on the left.

near the closest point, as shown in Fig. 2.
With this in mind, we have approximated a multibody

problem for a series of binary deflections near their closest
point, as shown in Fig. 2, in which a test particle starts at
the lower-right point, and its final point is at the upper-right
point due to the interaction with a field particle at rest.

The exact calculation hereafter refers to that obtained
by solving the following equation of motion for the test
particle with a charge e, mass m, and velocity u at a position
r.

du
dt
=

e2

4πε0 m

N∑
i=−N

N∑
j=−N

r − ri j∣∣∣r − ri j

∣∣∣3 , (7)

where ri j are the field particles’ positions determined by
the 5-th order Runge-Kutta-Fehlberg method, which is also
known as the RKF56.

For simplicity, let us assume, that all the filed particles
are at rest, i.e., ui j = 0, in the x–y plane. Let us also assume
that their spatial distribution ri j is almost uniform with a
spacing of the average interparticle separation Δ� ≡ n−1/3,
as

ri j =
(
i Δ� + δxi j

)
ex +

(
j Δ� + δyi j

)
ey,

for −N ≤ i, j ≤ N, as shown in Fig. 3, where n stands for
the number density, and deviations δri j =

(
δxi j, δyi j

)
from

grid points (iΔ�, jΔ�) satisfy

δxi j = δyi j = 0 (for i = j = 0)
N→∞∑

i, j

δxi j =

N→∞∑
i, j

δyi j = 0 (else)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (8)

and

1
Np

N→∞∑
i, j

δx2
i j =

1
Np

N→∞∑
i, j

δy2
i j ∼ Δ�2. (9)

The first assumption in Eq. (8) states that the field particle
with i = j = 0 is always at the origin in this study, i.e.
r00 = 0. The impact parameter b is for the field particle
at the origin, i.e., b = b00, as shown in Fig. 3. It should be
noted that the number N is not the number of field particles,
Np, which is given by Np = (2N + 1)2.

Fig. 3 Two-dimensional multibody Coulomb interaction. A
gray circle (or red in color) is a test particle at r with
an impact parameter b, and almost-uniformly-distributed
black circles are field particles.

Fig. 4 An example of the exact velocity changes vs nondimen-
sional plasma size N. The impact parameter b = Δ�/5
and the field particle positions are fixed.

In typical fusion plasmas with a temperature of T =
10 keV and a number density of n = 1020 m−3, the De-
bye length is λD ∼ 500 Δ�, thus N ∼ 500 corresponds to
λD. Figure 4 shows N-dependence of the exact velocity
changes Δvx for a fixed impact parameter b = Δ�/5 and for
fixed positions of Np field particles [2]. After the equation
of motion for a test particle is solved in the presence of Np

field particles for an N with 0 ≤ N < Nmax ≡ 500, we
increase N as N = N + 1 without changing the positions
of Np field particles, which are already considered in the
previous N-th stage of the analysis. In Fig. 4, the velocity
change is seen to converge around N = 10, which we adopt
in the following calculations.

2.1 Coordinate transformation
In order to apply the above approximated binary inter-

action shown in Fig. 2 to a multibody case shown in Fig. 3,
we first seek for a field particle that provides the test par-
ticle with an impulse force at the earliest time. For this
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Fig. 5 Coordinate transformation.

purpose, it is convenient to transform the coordinate sys-
tem from (x, y) to (ξ, η), such that the initial position of
the test particle is at the origin (ξ, η) = (0, 0), and the rel-
ative velocity g ≡ u − ui j is (gξ, gη) = (0, g). Then a field
particle at ri j has an η-coordinate of

ηi j =
(
ri j − r

)
· g/g. (10)

The test particle moves along the η-axis with a con-
stant velocity g, and is to interact at

(
0, ηi j

)
with this field

particle in a time interval of Δti j ≡ ηi j/g s. Accordingly,
the field particle that provided the test particle with an im-
pulse force at the earliest time has the smallest positive ηi j,
i.e.,

ηmin ≡ min
(
max

(
0, ηi j

))
, for − N ≤ i, j ≤ N. (11)

We have ignored the effect of field particles with ηi j < 0,
since the interaction is completed at η = 0 in our approx-
imation. In other words, such field particles have already
interacted with the test particle in the past.

When the test particle moves to (0, ηmin) position, it
changes the relative velocity by Δgi j as

Δgi j = −2g sin
χi j

2
eξ, (12)

χi j � 2 arctan
b0

ξi j
, (13)

where the pair of i and j satisfies Eq. (11), and we have
approximated that the impact parameter is given by b = ξi j

in Eq. (6), as shown in Fig. 5. Thus, in the (ξ, η) coordinate
system, the field particle positions, ξi j and ηi j, correspond
to the velocity change Δgi j and the time of the interaction
Δti j, respectively. This procedure is repeated until the test
particle leaves the prescribed interaction region, i.e., r <
Δ�/2, as depicted in Fig. 1.

3. Calculation
3.1 Comparison between the exact and alge-

braic trajectories
Figure 6 compares the algebraic trajectory and the ex-

act hyperbola in the case of the pure binary Coulomb in-

Fig. 6 Comparison of algebraic trajectory and exact trajectory
in the case of binary Coulomb collision (N = 0) with an
impact parameter b = Δ�/5. In the figure on the right,
the exact- and algebraic trajectories are depicted with the
only field particle at the origin, in which the field particle
location is also shown with a black circle. On the left is
the enlarged view.

Fig. 7 Comparison of algebraic trajectory and exact trajectory in
the case of multibody (N = 10) Coulomb collisions with
an impact parameter b = Δ�/5. Note that not all the field
particles are shown. This is an example of small angle
scatterings.

teraction, i.e., N = 0 in Eq. (7), with an impact parameter
b = Δ�/5. The only field particle is at the origin in this
case. The test particle starts at the lower right point, passes
through the closest point, and ends at the upper right point
in the figure.

Figures 7, 8, and 9 are three examples out of 105

Monte Carlo calculations for an impact parameter b =
Δ�/5, and they compare the algebraic and exact trajecto-
ries in the case of the multiple Coulomb interactions, i.e.,
N = 10 in Eq. (7). In these cases, there are nearly uni-
formly distributed 21 × 21 field particles at rest, and sym-
bols in the figures for the algebraic trajectories indicate the
positions at which the test particle is provided with the im-
pulse force by one of the Np field particles. Individual ap-
proximations are good in most cases, as shown in Figs. 7
and 8. The former is an example of small angle scattering,
and the latter depicts the large angle scattering case. On
the other hand, Fig. 9 is one of few examples in which the
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Fig. 8 Comparison of algebraic trajectory and exact trajectory in
the case of multibody (N = 10) Coulomb collisions with
an impact parameter b = Δ�/5. This is an example of
large angle scatterings.

Fig. 9 Comparison of algebraic trajectory and exact trajectory in
the case of multibody (N = 10) Coulomb collisions with
an impact parameter b = Δ�/5. The discrepancy is as
small as 10−13 meter in typical fusion plasmas.

approximation seems bad. The algebraic trajectory in Fig.
9 deviates from the exact one, however, the deviation is as
small as Δ�×10−6 ∼ 10−13 meter in typical fusion plasmas,
which is of the same order of the de Broglie wavelength.

3.2 Momentum transfer cross section
Finally, we conducted the above calculation for differ-

ent impact parameters 0 < b < Δ�/2. Figure 10 shows the
accumulated variance of velocity change

〈
(Δg)2

〉
, which is

in proportion to the momentum transfer cross section, σbin
m ,

as

σbin
m =

∫ bmax

0

(
Δg
g

)2

πbdb = 4πb2
0 ln

bmax

b0
. (14)

Depicted in Fig. 10 is the accumulated scattering cross sec-
tionσacc (b) as a function of the impact parameter b defined
by

σacc (b) =
∫ b

0

(
Δg
g

)2

πbdb. (15)

The error in the accumulated cross section σbin
acc (b) due to

Fig. 10 Accumulated binary (N = 0) Coulomb scattering cross
section σbin

acc (b) /Δ�2 vs normalized impact parameter b̄ =
b/Δ�.

Fig. 11 Accumulated multiboby (N = 10) Coulomb scattering
cross section σmulti

acc (b) /Δ�2 vs normalized impact param-
eter b̄ = b/Δ�.

the algebraic approximation is quite small for the binary
(N = 0) case, as shown in Fig. 10, where there is only one
field particle. It should be noted that in the binary interac-
tions, the cross section σmulti

acc (b) is converged at b � Δ�,
which is far less than the Debye length λD ∼ 500Δ� in
fusion plasmas.

In the case of the multibody (N = 10) interaction,
where there are 21×21 field particles, the error in σmulti

acc (b)
is quite small, as shown in Fig. 11.

4. Discussion
The two-dimensional multibody scattering cross sec-

tion σmulti
acc � 2.8 × 10−8Δ�2 with the maximum impact pa-

rameter bmax = Δ�/2 is more than 103 times the binary
cross section σbin

acc � 2.3 × 10−11Δ�2. However, this is not
the anomalous diffusion. The binary interaction occurs in
an orbital plane, whereas multibody interactions are inher-
ently three-dimensional. Even if a field particle locates so
close to the test particle in the (x, y) plane that the interac-
tion results in a large angle scattering in the 2-d calculation
with, say, z ≡ 0, the same field particle locates not neces-
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sarily close to the test particle with z � 0 in 3-d.
The CPU time required for the algebraic approxi-

mation is only about 20 min using a personal computer,
whereas the exact analysis requires 15 h to integrate the
entire set of multibody equations of motion.

Strictly speaking, the analysis here is not for multi-
body problems, but solves the test particle motion in the
presence of the multiple field particles at rest. The exten-

sion to the full multibody problem is straightforward. We
will soon apply this method to three dimensional full multi-
body interactions.
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