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Nonlinear energy transfer of the drift-wave spectrum is investigated experimentally in a cylindrical laboratory
plasma. Using the Hasegawa-Mima equation, the nonlinear transfer function of electrostatic potential energy in
frequency space is estimated by bispectral analysis. The transfer function derived from the drift-wave spectrum
indicates a forward cascading of energy transfer from fundamental to higher harmonic modes.

c© 2008 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: drift-wave, Hasegawa-Mima equation, bispectral analysis, nonlinear energy transfer

DOI: 10.1585/pfr.3.056

It is recognized that drift-wave turbulence dominates
in magnetized plasmas with a finite density gradient and
makes a significant contribution to plasma transport called
anomalous transport [1]. Turbulence consists of not only
linearly unstable modes but also nonlinearly excited quasi-
modes. Therefore, to understand turbulence and control
transport, research on nonlinear energy transfer of self-
regulated turbulence in the phase space (frequency and
wave number space) is crucial. Quadratic nonlinearity
plays a dominant role on the energy transfer. In this rapid
communication, we present a direct estimation of the en-
ergy transfer function and direction of energy cascading in
the drift-wave spectrum in a laboratory plasma.

Experiments were conducted on a linear device, the
Large Mirror Device (LMD) [2,3]. In the LMD, nonlinear-
ity between the drift-wave spectrum and the low-frequency
zonal E × B velocity is investigated intensively [4, 5]. The
experimental conditions were; RF power = 2 kW, magnetic
field B = 0.12 T, and filling argon gas pressure ∼3.5 mTorr.
The configuration of B converges near the plasma source
and is straight in the vessel. Fluctuations are mainly mea-
sured with a Reynolds stress probe (RSP) [3]. The RSP has
three tungsten electrodes with poloidal or radial distances
of 4.4 mm or 5 mm. The radial wave number kr and the
poloidal wave number kθ are derived from the cross-phase
of the floating potential fluctuation Φ̃f . The right-handed
system is selected in the coordinate.

Figure 1 shows the spectra of Φ̃f , auto-power (a), kθ
and kr (c). The spectra are measured at the radial loca-
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Fig. 1 (a) Auto-power spectrum of the floating potential fluctu-
ation Φ̃f . (b) The poloidal wave number kθ (black), and
the radial wave number kr (red) of Φ̃f .

tion r = 3.25-3.5 cm where the inverse of the density scale
length and the normalized fluctuation amplitude have max-
ima. In Fig. 1 (a), a distinct spectral peak at 7-8 kHz (the
fundamental mode) as well as its higher harmonics is ob-
served. We compared the normalized fluctuation ampli-
tudes of the fundamental mode between potential and den-
sity, and obtained Φ̃f/T e of ∼0.16 and Ĩi,sat/Ii,sat of ∼0.18,
which does not contradict the Boltzmann relationship. The
fundamental mode has poloidal/axial mode numbers of
(m, n) = (3-5, 2-3) [6], where n = 1 means that the axial
wave length is the same as the vessel length. In addition,
the fundamental mode has a finite radial wave number in
Fig. 1 (b). These properties of the fundamental mode do
not contradict the estimation that the fundamental mode is
the drift-wave [3].

Based on the Hasegawa-Mima equation (Eq. (8) in
Ref. [6]), an energy transfer relationship in spectral form
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where φ is the normalized electrostatic potential, ω/(2π)
is the frequency, and k is the wave vector. The nonlinear
three-wave coupling conditions, ω = ω1+ω2 and k = k1+

k2, whereω is the angular frequency of φk, are satisfied un-
der the first order approximation. We estimate the first term
of the right hand side of Eq. (1), the nonlinear energy trans-
fer function, in frequency space. In addition, to calculate
negative coupling conditions, ω = ω1−ω2, we assume that
a wave with a frequency of −ω has the wave vector −kω.

Figure 2 demonstrates an indicator of the energy
transfer function, F(ω1, ω2) = (kω1 × kω2 ) · ez
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〉. Positive means that a mode with
ω gains energy from coupling of modes with ω1 and ω2,
and negative means the opposite. A two-dimensional con-
tour of the transfer function is shown in Fig. 2 (a), and de-
tailed slices in different ω2 axes are plotted in (b)-(d). The
legend range from −0.05 to 0.05 in (a) is chosen to pro-
vide a clear view of transfer directions. We carefully cal-
culated the transfer function in the frequency range where
the aliasing effect of the wave number measurement can be
eliminated.

In the positive frequency region of Fig. 2 (a) (ω ≥
ω1, ω2 ≥ 0), a slice (b) is chosen along the ω2/(2π) =
7.14 kHz (= ω1st/(2π), frequency of the fundamental
mode), and we can see three positive spectral peaks at
ω1 = 2ω1st, 3ω1st and 4ω1st. The spectral peak at
ω1 = 2ω1st means that the mode with 3ω1st gains en-

Fig. 2 Plots of an indicator of energy transfer function,
F(ω1, ω2) = (kω1 × kω2 ) · ez
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[arb. unit]. ω = ω1 + ω2 holds. A two-dimensional plane
(a), slices of (a) along lines at ω2/(2π) = 7.14 kHz (b),
at ω2/(2π) = −7.14 kHz (c) and at ω2/(2π) = −14.3 kHz
(d).

ergy from mode coupling with ω1st and 2ω1st. (This pa-
per expresses the energy transfer relationship as φ(ω1st) +
φ(2ω1st) ⇒ φ(3ω1st). ) Other modes with 4ω1st and 5ω1st

also gain energy from nonlinear couplings. On the con-
trary, the negative frequency region demonstrates many
coherent negative peaks at the frequency of the higher
harmonics of the drift-wave. Slices (c) or (d) are cho-
sen along ω2 = −ω1st or ω2 = −2ω1st. A spectral peak
at ω1 = 2ω1st in (c) means that the mode with ω1st re-
leases energy to coupling of the modes with −ω1st and
2ω1st, φ(ω1st) ⇒ φ(2ω1st) + φ(−ω1st). We abbreviate
the release process as Quasi-Parametric Decay Instability
(QPDI). Other QPDIs show φ(2ω1st)⇒ φ(3ω1st)+φ(−ω1st)
and φ(3ω1st) ⇒ φ(4ω1st) + φ(−ω1st). The slice (d) also
demonstrates a negative peak at ω1 = 4ω1st, indicating an-
other QPDIs φ(2ω1st) ⇒ φ(4ω1st) + φ(−2ω1st). Compar-
ing transfer directions between positive and negative fre-
quency region, both directions show forward cascades. For
example, both processes of φ(2ω1st)⇒ φ(3ω1st)+φ(−ω1st)
and φ(ω1st) + φ(2ω1st) ⇒ φ(3ω1st) means that the second
harmonics drive the third harmonics. For other coupling
frequencies, the same relationship holds.

We discuss excitation of the second harmonics. In the
Hasegawa-Mima equation, direct excitation of the second
harmonic from coupling of the fundamental mode is pro-
hibited. However, decay instability of a singleωmode may
nonlinearly drive its second harmonics. Identification of
the decay instability should be performed in measurement
of the wave number spectrum, and we cannot conclude the
QPDI in this manuscript. Other channels of second har-
monics excitation are possible. Broadening the bandwidth
of the fundamental mode produces two modesω1±dω, and
couplings of the two modes may drive the second harmon-
ics. However, this process is not clearly observed in this
experiment. In addition, there could be a number of en-
ergy flow channels to the second harmonics by addressing
various fluctuation fields such as density fluctuation [7].
Further research is necessary to determine the total energy
channel to the second harmonics.

In summary, nonlinear energy transfer occurs from the
fundamental drift-wave to its higher harmonics, and this
confirms a forward cascading in the drift-wave spectrum.
This energy transfer estimation is limited within the poten-
tial field, therefore, future investigations should consider
energy transfer that includes the effects of various fluctua-
tion fields as well as difference in location.
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