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Gyrokinetic theory and simulation results are presented to investigate regulation of ion temperature gradient
(ITG) turbulence due to E × B zonal flows in helical systems. In order to examine effects of changes in helical
magnetic configuration on anomalous transport and zonal flows, magnetic field parameters representing the stan-
dard and inward-shifted configurations of the Large Helical Device (LHD) [O. Motojima, N. Ohyabu, A. Komori,
et al., Nucl. Fusion 43, 1674 (2003)] are used. The linear gyrokinetic analyses show that the largest growth rate
of the linear ITG instability for the inward-shifted configuration is slightly higher than that in the standard one
while, as theoretically predicted, zonal flows generated by given sources keep larger values for longer time for
the inward-shifted case because of a smaller safety factor, a lower aspect ratio, and slower radial drift velocities
of helical-ripple-trapped particles. It is shown from the gyrokinetic Vlasov simulation of the ITG turbulence
that, in spite of the higher ITG-mode growth rate, the inward-shifted plasma takes a smaller average value of
the ion thermal diffusivity in the steady turbulent state with a higher zonal-flow level. These results imply that
neoclassical optimization contributes to reduction of the anomalous transport by enhancing the zonal-flow level
and give a physical explanation for the confinement improvement observed in the LHD experiments with the
inward plasma shift. When equilibrium radial electric fields produce poloidal E × B rotation of helically-trapped
particles with reduced radial displacements, further enhancement of zonal flows and resultant transport reduction
are theoretically expected.
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1. Introduction
In fusion science, numerous theoretical and experi-

mental works have been done on zonal flows which are
now well known to play a critical role in regulation of
turbulent transport in plasmas [1–3]. Therefore, in order
to improve plasma confinement in helical systems, where
various geometrical configurations are explored [4–8], it
is very important to elucidate effects of magnetic geom-
etry on both microinstabilities and zonal flows. This work
presents results from gyrokinetic theory and simulation to
investigate regulation of ion temperature gradient (ITG)
turbulence due to E × B zonal flows in helical systems.

It was shown in our previous papers [9–12] that, in he-
lical systems, zonal flows can be maintained for a longer
time by reducing the radial drift velocities of particles
trapped in helical ripples. This implies a possibility that
helical configurations optimized for reducing the neoclas-
sical transport can enhance zonal flows and accordingly
lower the turbulent transport as well because the neoclas-
sical particle and heat fluxes are also decreased by slowing
down the radial drift of helical-ripple-trapped particles. In
fact, it is observed in the Large Helical Device (LHD) [13]
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that not only neoclassical but also anomalous transport is
reduced by the inward plasma shift [14] which decreases
the radial particle drift but increases the unfavorable mag-
netic curvature to destabilize pressure-gradient-driven in-
stabilities such as ITG modes. This reduction of anoma-
lous transport by neoclassical optimization is a very attrac-
tive property of helical systems to recent researches on ad-
vanced concepts of helical devices [4–8]

It was shown by the ITG turbulence simulation in
our previous work [11, 12], in which model helical fields
for the standard and inward-shifted LHD configurations
were used in the gyrokinetic Vlasov (GKV) code [15], that
the turbulent ion thermal transport in the inward-shifted
model, which has larger growth rates of the ITG stabil-
ity, was considerably regulated by the zonal flows to alevel
comparable to the standard case although the thermal dif-
fusivity χi for the inward-shifted case was slightly but still
larger than for the standard case. However, in the recent
GKV simulation with more accurate configuration models
installed [16], we find that further stronger zonal-flow gen-
eration occurs and makes χi smaller for the inward-shifted
configuration [17–19].

Recently, Mynick and Boozer [20] predicted by using
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the action-angle formalism that the collisionless residual
zonal-flow level will be enhanced when the equilibrium
radial electric field causes helical-ripple-trapped particles
to follow closed poloidal orbits with small radial displace-
ments. Here, our gyrokinetic theory of zonal-flow response
is also extended to analytically derive detailed expressions
for the effects of the equilibrium electric field on zonal
flows in helical systems.

The rest of this paper is organized as follows. In
Sec. 2, basic equations for the ITG turbulence in helical
systems are shown and magnetic fields corresponding to
the standard and inward-shifted LHD configurations are
described. In Sec. 3, linear analyses of ITG modes and
zonal flows are done. Zonal-flow responses for the stan-
dard and inward-shifted configurations obtained by linear
gyrokinetic simulations are compared with those derived
from analytical formulas. In Sec. 4, results from nonlinear
gyrokinetic simulations of the ITG turbulence are shown.
It is elucidated how turbulent transport and zonal-flow gen-
eration are influenced by changing the magnetic configura-
tion. In Sec. 5, effects of the poloidal E×B drift due to the
equilibrium radial electric field, which is not included in
the simulations, are investigated to derive a new formula
for the zonal-flow response. Finally, conclusions are given
in Sec. 6.

2. Basic Equations
The nonlinear gyrokinetic equation for the perturbed

ion gyrocenter distribution function fik⊥ with the wave
number vector k⊥ perpendicular to the magnetic field B
is written as(

∂

∂t
+ v‖b · ∇ + iωDi

)
fk⊥

=
(−v‖b · ∇ − iωDi + iω∗T i

) (
F0 J0(k⊥ρ)

eφk⊥

Ti

)

+
c
B

∑
k′⊥+k′′⊥=k⊥

[b · (k′⊥ × k′′⊥)]J0(k′⊥ρ)φk′⊥ fik′′⊥ ,

(1)

where F0 is the local ion equilibrium distribution func-
tion thattakes the Maxwellian form, J0(k⊥ρ) is the zeroth-
order Bessel function, ρ = v⊥/Ωi is the ion gyroradius,
and Ωi = eB/(mic) is the ion gyrofrequency. The two
frequencies ωDi and ω∗T i are defined by ωDi = k⊥ · uDi

and by ω∗T i = ω∗i[1 + ηi{miv
2/2Ti − 3/2}] respectively,

where uDi ≡ (c/eB)b × (e∇Φ + μ∇B + miv
2
‖ b · ∇b)

is the ion gyrocenter drift velocity, ω∗i ≡ k⊥ · (b ×
∇r)(cTi/eB)(d ln n0/dr) is the ion diamagnetic frequency,
and ηi ≡ Ln/LTi is the ratio of the density gradient scale
length Ln ≡ −1/(d ln n0/dr) to the ion temperature gradi-
ent scale length LTi ≡ −1/(d ln Ti/dr). In Eq. (1), fik⊥ is
regarded as a function of the kinetic energy w ≡ (1/2)miv

2,
the magnetic moment μ ≡ miv

2⊥/(2B), and the toroidal co-
ordinates (r, θ, ζ), where r, θ, and ζ denote the flux surface
label, the poloidal angle, and the toroidal angle, respec-

tively. A closed system of equations to determine the per-
turbed ion distribution function fik⊥ and the electrostatic
potential φk⊥ in the ITG turbulence are given by Eq. (1)
and the quasineutrality condition,

∫
d3v J0 fik⊥ −n0

eφk⊥

Ti
[1 − Γ0(b)] = n0

e
Te

(
φk⊥ − 〈φk⊥〉

)
,

(2)

where 〈· · · 〉 represents the flux-surface average and Γ0(b)
is defined by Γ0(b) ≡ I0(b)e−b with the zeroth-order modi-
fied Bessel function I0(b) and b ≡ k2⊥Ti/(miΩ

2
i ).

The magnetic field is written as B = ∇ψ(r) × ∇(θ −
ζ/q(r)), where 2πψ(r) is equal to the toroidal flux within
the flux surface labeled r and q(r) represents the safety fac-
tor. In the present work, the radial coordinate r is defined
by ψ = B0r2/2. Following Shaing and Hokin [21], we here
consider helical systems with the magnetic field strength B
written by

B/B0 = 1 − ε00(r) − ε10(r) cos θ − εL0(r) cos(Lθ)

−
∑
|n|≤nmax

ε(n)
h (r) cos{(L + n)θ − Mζ}

= 1 − ε00(r) − εT(r, θ)

− εH(r, θ) cos{Lθ − Mζ + χH(θ)},
(3)

where

εT(r, θ) = ε10(r) cos θ + εL0(r) cos(Lθ),

εH(r, θ) =
√

C2(r, θ) + D2(r, θ),

χH(r, θ) = arctan[D(r, θ)/C(r, θ)],

C(r, θ) =
∑
|n|≤nmax

ε(n)
h (r) cos(nθ),

D(r, θ) =
∑
|n|≤nmax

ε(n)
h (r) sin(nθ), (4)

and M (L) is the toroidal (main poloidal) period number of
the helical field. In the present work, we use L = 2 and
M = 10 to consider the LHD configurations. Multiple-
helicity effects can be included in the function εH(r, θ).
Hereafter, we put εL0 = 0, nmax = 1, and ε00 = 0 (but
ε′00 ≡ dε00/dr � 0) in Eq. (3) at the radial position r that we
consider.

In order to model the standard and inward-shifted
LHD configurations, we use numerical values shown in
Table 1 for the safety factor q, the magnetic shear param-
eter ŝ ≡ (r/q)(dq/dr), the inverse aspect ration r/R0, the
Fourier components of the field strength (εt ≡ ε10, εh ≡
ε(0)

h , ε− ≡ ε(−1)
h , ε+ ≡ ε(+1)

h ), and their radial derivatives.
The two sets of parameters in Table 1 for the standard
and inward-shifted configurations are called S-B an I-B,
respectively, in [16]. These parameters correspond to the
flux surface at r � 0.6a (a : the plasma surface label) and
they are taken from the vacuum magnetic field data, which
describe the LHD configurations more accurately than the
model field used in our previous study [11, 12]. The use of
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Table 1 Parameters at the flux surface r � 0.6a in the standard
and inward-shifted configurations.

q r/R0 εt εh/εt ε−/εt ε+/εt

standard 1.9 0.099 0.087 0.91 -0.28 0
inward 1.7 0.114 0.082 1.20 -0.74 -0.24

ŝ rε′00/εt rε′t /εt rε′h/εt rε′−/εt rε′+/εt

standard -0.85 0.22 1.02 1.96 -0.63 0
inward -0.96 0.71 1.00 2.44 -0.36 -0.61

vacuum field data is justified because low beta plasmas are
considered here.

3. Linear Analyses of ITG Modes
and Zonal Flows
In this section, the linearized version of Eq. (1) and the

quasineutrality condition given by Eq. (2) are numerically
solved by using the GKV code in order to obtain the linear
dispersion relation for the ITG instability and the zonal-
flow response to the initial perturbation in the standard and
inward-shifted configurations with the parameters shown
in Table 1.

3.1 Linear ITG instability
Figure 1 shows real frequencies and growth rates of

the linear ITG instability as a function of the normalized
poloidal wave number kθρti where ρti ≡ vti/Ωi is the ion
thermal gyroradius and vti ≡ (Ti/mi)1/2 is the ion ther-
mal velocity. Here, ηi ≡ Ln/LTi = 3, Ln/R0 = 0.3,
Te/Ti = 1, α ≡ ζ − qθ = 0, and the parameters in Table 1
are used. The real frequencies and growth rates for the
inward-shifted configuration take similar values to those
for the standard configuration. Compared with the results
in our previous work [11, 12], where simple model field
parameters are used, the difference in the growth rates be-
tween the standard and inward-shifted configurations are
reduced because of changes in values of q, ŝ and magnetic
curvature although the maximum growth rate for the latter
case is still larger than for the former case.

3.2 Zonal-flow response
Collisionless time dependence of the zonal-flow po-

tential, which has the wave number vector k⊥ = kr∇r
perpendicular to the flux surface, is analytically derived
as [10]

eφk⊥ (t)

Ti

= K(t)
eφk⊥ (0)

Ti
+

1

n0〈k2⊥ρ2
ti〉

∫ t

0
dt′ K(t − t′)

×
{

1 − 2
π

〈
(2εH)1/2 {

1 − gi1(t − t′, θ)
}〉}−1

Fig. 1 Real frequencies and growth rates of the linear ITG in-
stability as a function of the normalized poloidal wave
number kθρti for the standard and inward-shifted config-
urations. Here, ηi ≡ Ln/LTi = 3, Ln/R0 = 0.3, Te/Ti = 1,
α = 0, and the parameters in Table 1 are used.

×
〈∫

κ2<1
d3v e−ikrvdri(t−t′) Fi0S ik⊥ (t′)

+

∫
κ2>1

d3v Fi0S ik⊥(t′)
{
1 + ikr

(
Δr − 〈Δr〉po

)}〉
,

(5)

where K(t) is defined by

K(t) = KGAM(t)[1 − KL(0)] +KL(t). (6)

Here, KGAM(t) andKL(t) are written as

KGAM(t) = cos(ωGt) exp(γt), (7)

and

KL(t) ≡ 1 − (2/π)〈(2εH)1/2{1 − gi1(t, θ)}〉
1 +G + E(t)/

(
n0〈k2⊥ρ2

ti〉
) , (8)

respectively. Detailed definitions of variables in Eqs. (5)–
(8) are found in [10]. In Eq. (7), the real frequency and
damping rate of the geodesic acoustic mode (GAM) [22]
are denoted by ωG and |γ| = −γ(> 0), respectively. Equa-
tion (6) represents that the GAM oscillations described by
KGAM(t) are superimposed around the averaged zonal-flow
evolution expressed by KL(t). We note that K(0) = 1 and
limt→+∞ KGAM(t) = 0. In Eq. (8), G represents the ratio of
the neoclassical polarization due to toroidally trapped ions
to the classical polarization while E(t) and {1−gi1(t, θ)} are
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associated with the shielding caused by the radial drift of
non-adiabatic helically trapped particles. We have E = 0
and gi1 = 1 at t = 0 because helically trapped particles
give no shielding before they begin radial drift. On the
other hand, E approaches a finite value and gi1 � 0 for
t � τc = 1/(krvdr) where τc represents the characteristic
time for the shielding due to helically-trapped particles to
occur. The response kernel KL(t) for the long-time behav-
ior of the zonal-flow potential takes the constant limiting
values,

K< ≡ lim
t/τc→+0

KL(t) =
1

1 +G
, (9)

and

K> ≡ lim
t/τc→+∞

KL(t)

= 〈k2
⊥ρ

2
ti〉

[
1 − (2/π)〈(2εH)1/2〉

]
×

{
〈k2
⊥ρ

2
ti〉[1 − (3/π)〈(2εH)1/2〉 +G]

+ (2/π)(1 + Ti/Te)〈(2εH)1/2〉
}−1

. (10)

In Eq. (10), the term proportional to Ti/Te is derived from
taking account of the radial drift of helical-ripple-trapped
electrons which cannot be described by the perturbed elec-
tron density model used in Eq. (2). Therefore, this term
should be neglected when using Eq. (10) for comparison to
numerical solutions of Eqs. (1) and (2).

We find from Ref. [10] that slower radial drift veloc-
ities of helical-ripple-trapped particles are favorable for
keeping a higher response of the zonal-flow potential to
a given source and that G in the denominator of Eq. (8) be-
comes smaller for lower q and higher r/R0. From these
facts, the inward-shifted configuration is expected to give
a better zonal-flow response. Figures 2 (a) and (b) show
KL obtained from Eq. (8) as a function of krρti for the
standard and inward-shifted configurations, respectively,
at vtit/R0 = 0, 6, 12, 24, and ∞ (which corresponds to
vtit/Ln = 0, 20, 40, 80, and ∞ in the case of Ln/R0 = 0.3
used for the linear and nonlinear ITG-mode simulations in
Sec. 3.1 and Sec. 4). Recall that Ln does not enter the lin-
ear equations to govern the zonal-flow evolution and that
Ln/vti cannot be used as the time unit without specifying
Ln/R0. We can confirm from Figs. 2 (a) and (b) that KL(t)
takes larger values and is damped slower for the inward-
shifted case than for the standard case. In the limit of
kr → 0, we have KL(t) → 0 for t > 0 in contrast to
tokamak cases whereKL(t) takes a finite constant value as
predicted by Rosenbluth and Hinton [23]. In the axisym-
metric limit εH → +0 with εT = εt cos θ (εt ≡ r/R0), we ob-
tain G → 1.6q2/ε1/2

t and KL(t) reduces to the Rosenbluth-
Hinton [23] formula KR−H = 1/(1 + 1.6q2/ε1/2

t ) for any
time t.

Responses of the zonal-flow potential to the ini-
tial perturbation K(t) = 〈φk⊥ (t)〉/〈φk⊥ (0)〉 obtained by
the linear gyrokinetic simulation for the standard and
inward-shifted configurations are shown in Fig. 3 (a) while

Fig. 2 The long-time response kernel KL obtained from Eq. (8)
as a function of krρti for the standard (a) and inward-
shifted (b) configurations at vtit/Ln = 0, 20, 40, 80, and
∞. Here, Ln/R0 = 0.3 is used.

Fig. 3 (b) shows K(t) theoretically predicted from Eq. (6).
Also, the long-time response kernelKL(t) given by Eq. (8)
is plotted in Figs. 3 (a) and (b). Here, the initial condi-
tion for the perturbed ion gyrocenter distribution function
is given by fik⊥(t = 0) = nk⊥ (t = 0) exp(−miv

2/2Ti) with
nk⊥ (t = 0) determined from φk⊥ (t = 0) through Eq. (2).
Results in Figs. 3 (a) and (b) are derived by using the ra-
dial wave numbers of krρti = 0.248 and 0.280 for the stan-
dard and inward-shifted cases, respectively. These values
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Fig. 3 Responses of the zonal-flow potential to the initial per-
turbation K(t) = 〈φk⊥ (t)〉/〈φk⊥ (0)〉 for the standard and
inward-shifted configurations obtained by (a) linear gy-
rokinetic simulation and (b) theoretical prediction in
Eq. (5). The long-time response kernel KL(t) given by
Eq. (8) is also plotted in (a) and (b). Here, the radial wave
numbers of krρti = 0.248 and 0.280 are used for the stan-
dard and inward-shifted cases, respectively. These values
correspond to the radial wave numbers of the dominant
zonal-flow components observed in the nonlinear simu-
lations for the two configurations (see Fig. 4 in Sec. 4).

Fig. 4 The turbulent ion thermal diffusivity χi and the radial av-
erage of the squared zonal-flow potential 〈φ〉2 as func-
tions of time t obtained by the ITG turbulence simulations
for the standard and inward-shifted configurations.

Fig. 5 Radial profiles of the zonal-flow potential 〈φ〉 at t =
120Ln/vti for the standard and inward-shifted configura-
tions.

correspond to the radial wave numbers of the dominant
zonal-flow components observed in the nonlinear simu-
lations for the two configurations (see Fig. 6 in Sec. 4).
We see from Figs. 3 (a) and (b) that the GAM oscilla-
tory damping and the increase in the zonal-flow response
K(t) = 〈φk⊥ (t)〉/〈φk⊥ (0)〉 due to the inward plasma shift
are well described by the theoretical predictions except that
KL(t) in Eq. (8) tends to give larger responses than the sim-
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ulation results. It is noted that both the trapped-particles’
fraction and the radial wave number are used as small ex-
pansion parameters in the theoretical treatment. Since both
parameter values used here are larger than in examples of
our previous work [10], the deviation of the theoretical pre-
diction from the simulation results shown in Figs. 3 (a) and
(b) is larger than in Ref. [10]. The improvement of the
zonal-flow response for the inward-shifted configuration
was also found in our previous work [11,12] using simpler
configuration models although the degree of the improve-
ment is more evident in the present study (see [16]).

4. Nonlinear Simulation of ITG
Turbulence and Zonal Flows
This section presents nonlinear simulation results of

the ITG turbulence and zonal flows obtained by solv-
ing Eqs. (1) and (2) with the GKV code (see also [18]).
The GKV code employs the toroidal flux tube domain
and we here use the same local plasma parameters (ηi ≡
Ln/LTi = 3, Ln/R0 = 0.3, Te/Ti = 1, and α = 0) as
in the linear calculations in Sec. 3.1. In order to obtain
the steady turbulence in the nonlinear simulations, we add
the collision term [12] with the collision frequency given
by ν = 0.002vti/Ln. This collision frequency is so small
that its effect on the dispersion relation of the ITG in-
stability is very weak. High numerical resolution along
the field line is required for the ITG turbulence simula-
tions for helical systems with a high toroidal period num-
ber M � 1. Besides, complicated fine phase-space struc-
tures appear due to motion of helical-ripple-trapped par-
ticles. In the present nonlinear simulations, a huge num-
ber of grid points over 50 billions are used in the five-
dimensional phase space : 128 × 128 × 512 × 128 × 48
in the (r, y, z, v‖, μ) coordinates for the standard case and
128×128×768×128×48 for the inward-shifted case. Here,
the coordinates across and along the field line are given
by y ≡ (r0/q0)[q(r)θ − ζ] and z ≡ θ, respectively, where
r0 and q0 represent the radial coordinate and the safety
factor at the center of the flux tube domain, respectively.
As shown in Table 1, for the inward shifted case, ampli-
tudes of helical-ripple components of the magnetic field
strength become larger and accordingly the variation of
the perturbed gyrocenter distribution function gets stronger
along the field line. Therefore, a significantly larger num-
ber of grids in the z(≡ θ) direction are used for the inward-
shifted case in order to keep the same degree of accuracy
as for the standard case. Here, the computational accura-
cies of nonlinear simulations for the standard and inward-
shifted cases are checked by monitoring the entropy bal-
ance [15]. The minimum wave number in the y direction
is given by ky,minρti = 0.0463 (Ly ≡ 2π/ky,min = 135.7ρti)
while the minimum radial wave number is kr,minρti = 0.124
(Lr ≡ 2π/kr,min = 50.7ρti) for the standard case, and
kr,minρti = 0.140 (Lr ≡ 2π/kr,min = 44.9ρti) for the inward-
shifted case. The small difference in kr,min stems from the

change in the magnetic shear parameter ŝ (see Table 1) al-
though it has no essential influence on the resultant trans-
port.

Figure 4 shows the turbulent ion thermal diffusivity χi

and the radial average of the squared zonal-flow potential
〈φ〉2 as functions of time t obtained by the GKV simula-
tion with the magnetic field data in Table 1 used for the
standard and inward-shifted configurations. Here, · · · rep-
resents the average over the radial domain with the width of
Lr ≡ 2π/kr,min. We see that, as expected from the results in
Sec. 3.1, χi grows faster for the inward-shifted configura-
tion in the early time stage (t < 40Ln/vti) than for the stan-
dard configuration and the peak value χi � 2.81ρ2

tivti/Ln

for the former case is slightly larger than the peak value
χi � 2.62ρ2

tivti/Ln for the latter case. However, in later time
(t > 40Ln/vti), the turbulent transport is regulated by gen-
eration of zonal flows and the time-averaged ion thermal
diffusivity χi � 1.27ρ2

tivti/Ln over 60Ln/vti < t < 250Ln/vti

for the inward-shifted case is about 30% smaller than the
average value χi � 1.78ρ2

tivti/Ln for the standard case. The
smaller value of χi for the inward-shifted plasma results
from the greater amount of zonal flows generated by tur-
bulence. A clear correlation between the decrease in χi

and the increase in 〈φ〉2 is identified in Fig. 4.
The GKV simulation shows that radially-elongated

eddy structures (streamers) are first driven by the toroidal
ITG instability although they are destroyed into small ed-
dies by the self-generated E × B zonal flows in the later
steady turbulent state [18]. Radial profiles of the zonal-
flow potential 〈φ〉 at t = 120Ln/vti for the standard and
inward-shifted configurations are plotted in Fig. 5, where
we see a larger amplitude of 〈φ〉 generated for the inward-
shifted case. Figure 6 (a) shows the radial-wave-number
spectral function S (kr) for the zonal-flow potential in the
two configurations. Here, S (kr) is defined by the time av-
erage of (2/kr,min)|〈φkr〉|2 over 60 ≤ vtit/Ln ≤ 250, where
〈φkr〉 is defined such that 〈φ〉 = ∑

kr
〈φkr〉eikr(r−r0) and kr =

j kr,min ( j = 0,±1,±2, · · · ). Then, the time average of 〈φ〉2
is represented by 1

2

∑
kr

S (kr)Δkr �
∫ ∞

0
S (kr)dkr, where

Δkr ≡ kr,min is used. It is noted that S (kr) still contains
contributions from high-frequency zonal-flow components
such as GAMs. In order to express the stationary zonal-
flow part of S (kr), we define S 0(kr) by multiplying 2/kr,min

by the squared absolute value of the time-averaged 〈φkr〉.
Figure 6 (b) shows S 0(kr) for the standard and inward-
shifted configurations. We see that both S (kr) and S 0(kr)
are considerably larger values for the inward-shifted case
than for the standard case especially in the low-kr region
and that they take the peak values at at kr = 2kr,min for
both cases. Here, it is recalled that the corresponding ra-
dial wave numbers krρti = 2kr,minρti = 0.248 (standard) and
0.280 (inward-shifted) are used for calculating the zonal-
flow responses in Fig. 3. We also find that the value of
S 0/S at kr = 2kr,min is 0.12 for the standard case and
0.91 for the inward-shifted case. This implies that large-
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Fig. 6 Radial-wave-number spectral functions (a) S (kr) and
(b) S 0(kr) for the zonal-flow potential in the standard
and inward-shifted configurations. Here, S (kr) is de-
fined by the time average of (2/kr,min)|〈φkr 〉|2 over 60 ≤
vtit/Ln ≤ 250, where 〈φkr 〉 is defined such that 〈φ〉 =∑

kr
〈φkr 〉eikr (r−r0) and kr = j kr,min ( j = 0,±1,±2, · · · ).

The stationary zonal-flow part S 0(kr) of S (kr) is defined
by multiplying 2/kr,min by the squared absolute value of
the time-averaged 〈φkr 〉.

amplitude stationary zonal-flow structures are generated
in the inward-shifted case [19], which is consistent with
the corresponding higher zonal-flow response shown in
Fig. 3. Thus, the inward-shifted configuration shows more
efficient generation of stationary (or low-frequency) zonal
flows, which effectively reduce the turbulent transport [24].
A typical radial scale length of the zonal flows observed
in the helical ITG simulations is shown to be shorter than
those found in the tokamak ITG case for the Cyclone
DIII-D base case parameters [11,12, 15]. Accordingly, the
zonal-flow potential spectrum in the lowkr-region has rela-
tively smaller amplitude than for the tokamak case. This
tendency is also expected from the kr-dependenceof the
zonal-flow response expressed in Eqs. (8) and (10).

5. Effects of Equilibrium Radial
Electric Fields on Zonal Flows
So far, we have neglected effects of the equilibrium

electrostatic potential Φ(r) which yields the radial electric
field E = Er∇r (Er = −dΦ/dr) and accordingly the E × B
drift velocity uE ≡ (c/B)Er∇r×b in the direction tangential
to the flux surface. Regarding the ITG modes, uE will just
give the Doppler shift k⊥ · uE to the real frequencies with-
out changing the growth rates. For the zonal-flow com-
ponents with k⊥ = kr∇r, at first, the equilibrium electric
field does not seem to influence the zonal-flow response
because k⊥ · uE = 0. However, when treating helical con-
figurations, we find subtle points about the above argument
with respect to the zonal-flow response. In the previous
sections, we have used the ballooning representation and
the local flux tube model, in which only the neighborhood
of a single field line labeled by α ≡ ζ − q(r)θ is consid-
ered. For helical systems, the field line label α explicitly
appears in the gyrokinetic equation in contrast to tokamak
cases although we have so far regarded α as a fixed pa-
rameter based on the above-mentioned local model. But,
even if the zonal-flow potential φ is independent of α, the
explicit appearance of α in the magnetic drift terms of the
gyrokinetic equation causes the perturbed gyrocenter dis-
tribution function δ f to depend on α. Therefore, in helical
configurations, we generally have uE · ∇δ f � 0 so that the
zonal-flow response can be affected by the existence of the
equilibrium electric field.

Compared with passing and toroidally trapped parti-
cles, helical-ripple-trapped particles will have their orbits
changed more greatly by the equilibrium radial electric
field Er. The radial displacements of helical-ripple-trapped
particles are significantly reduced when the E × B drift
due to Er generates their rapid poloidal rotations as shown
in Fig. 7. For such cases, neoclassical ripple transport is
reduced and, in addition, higher zonal-flow responses are
expected because the shielding of the zonal-flow potential
by the helically-trapped particles is weakened. This sce-
nario was first presented by Mynick and Boozer [20], who
employed the action-angle formalism and pointed out the
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Fig. 7 Orbit of bounce-center motion of helical-ripple-trapped
particles modified by the radial electric field Er . Here,
ΔE represents the radial displacement of the orbit.

analogy between the mechanisms of zonal-flow shielding
and neoclassical transport.

Taking account of the dependence of the perturbed
distribution function on the field line label α, our formu-
lation of zonal-flow response is extended to derive detailed
expressions for the Er effects on the zonal-flow response.
We now assume the bounce centers of helically-trapped
particles to draw poloidally-closed orbits with the poloidal
angular velocity ωθ ≡ −cEr/(rB0). Furthermore, consider-
ing the helical configuration with the single-helicity com-
ponent, for which εH = εh is independent of θ, we find that,
for t � 1/ωθ, the shielding term E due to the helically-
trapped particles in Eq. (8) is replaced with EEr defined by

EEr =
15
8π

(2εh)1/2(krρti)2

(
εtvti

rωθ

)2 (
1 +

Te

Ti

)
(11)

Using Eq. (11), the collisionless long-time limit of the
zonal-flow response kernel, which represents the residual
zonal flow level, is now given not by Eq. (10) but by

KEr =
1

1 +G + EEr/(krρti)2

=

⎡⎢⎢⎢⎢⎢⎣1 +G +
15
8π

(2εh)1/2

(
εtvti

rωθ

)2 (
1 +

Te

Ti

)⎤⎥⎥⎥⎥⎥⎦
−1

(12)

We see that, as Er increases,KEr increases and approaches
the same value 1/(1 + G) as in Eq. (9) because EEr is in-
versely proportional to the square of Er. It is noted that
EEr/k

2
r given from Eq. (11) corresponds to the product of

the helically-trapped-particles’ fraction (∼ ε1/2
h ) and the

square of the radial orbit width ΔE(∝ 1/ωθ ∝ 1/Er) of
helically-trapped-particles’ poloidal rotation (see Fig. 7),
which agrees with Mynick and Boozer [20]. In helical con-
figurations such as the inward-shifted LHD case, which are
optimized for reduction of neoclassical transport, the en-
hancement of zonal-flow response due to Er is expected
to work more effectively than in others because the neo-
classical optimization reduces radial displacements ΔE of
helically-trapped particles during their poloidal E × B ro-
tation.

In this section, we have assumed that there is no shear
in the equilibrium electric radial electric field Er. Like the
stationary zonal flows, the sheared equilibrium E×B flows
are also expected to regulate turbulent transport if they ex-
ist. When dEr/dr is nonzero, the relative magnitude of the
equilibrium E × B flow shear to the zonal-flow shear is
evaluated by

dEr/dr
k2

r 〈φkr〉
=

(ρti/LE)(vE/vti)
(krρti)2(e〈φkr〉/Ti)

, (13)

where the gradient scale length for Er is defined by LE ≡
Er/(dEr/dr). Using the measured values of Er in the LHD
experiments (see Ref. [25]), we typically have vE/vti ≤
ρti/r ∼ 0.01 and LE ∼ r in the bulk plasma region (0.3 ≤
r/a ≤ 0.7). If we use the amplitude of the time-averaged
zonal-flow potential e〈φkr〉/Ti ∼ ρti/r for krρti ∼ 0.28
obtained from our gyrokinetic turbulence simulation for
the inward-shifted configuration (see Ref. [19] where ra-
dial profiles of the time-averaged zonal-flow potential are
shown), the above shear ratio becomes smaller than 0.13
and the shear of the equilibrium E × B flow is anticipated
to be less effective than the zonal-flow shear. However,
our simulation also shows that the amplitude of the time-
averaged zonal-flow potential becomes smaller by one or-
der of magnitude in the standard case than in the inward-
shifted case [19]. Therefore, in the standard case, the equi-
librium E × B flow shear can be more effective than the
zonal-flow shear if there exists a steep gradient in Er with
LE � r. In order to take account of the equilibrium shear
flow in the gyrokinetic simulation, global treatment in the
radial direction is necessary and further extension of the
present study is required.

6. Conclusions
In the present work, effects of changes in helical mag-

netic configuration on anomalous transport and zonal flows
are investigated based on gyrokinetic theory and simula-
tion of ITG turbulence and zonal flows. In order to repre-
sent a specific flux surface (r � 0.6a) in the standard and
inward-shifted LHD configurations, magnetic parameters
such as the Fourier components of the field strength, their
radial derivatives, the aspect ratio, the safety factor, and the
magnetic shear are used, which describe the configurations
more accurately than our previous model parameters. We
find from the linear analyses that the largest growth rate of
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the linear ITG instability for the inward-shifted configura-
tion is slightly higher than that in the standard one while,
for the former case, the zonal-flow response is more favor-
able to generation of low-frequency zonal flows as theo-
retically predicted. The nonlinear gyrokinetic simulation
shows that the turbulent ion thermal diffusivity χi for the
inward-shifted plasma takes a slightly higher peak value
in the early time stage but a lower average value in the
later steady turbulent state with stronger zonal-flow gen-
eration. Thus, it is confirmed that neoclassical optimiza-
tion contributes to reduction of the anomalous transport
by enhancing the zonal-flow level. This presents a phys-
ical mechanism to explain the confinement improvement
observed in the LHD experiments with the inward plasma
shift. Also, further enhancement of zonal flows and resul-
tant transport reduction are theoretically expected when the
equilibrium radial electric field Er causes poloidal E × B
rotation of helically-trapped particles with reduced radial
displacements. Simulation studies on the Er effects require
global treatment in the direction parallel to the E × B drift
velocity and remain as a future task.
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