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Particle Orbit Analysis in the Finite Beta Plasma
of the Large Helical Device using Real Coordinates
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High-energy particles in a finite beta plasma of the Large Helical Device (LHD) are numerically traced in
a real coordinate system. We investigate particle orbits by changing the beta value and/or the magnetic field
strength. No significant difference is found in the particle orbit classifications between the vacuum magnetic field
and the finite beta plasma cases. The deviation of a banana orbit from the flux surfaces strongly depends on the
beta value, although the deviation of the orbit of a passing particle is independent of the beta value. In addition,
the deviation of the orbit of the passing particle, rather than that of the banana-orbit particles, depends on the
magnetic field strength. We also examine the effect of re-entering particles, which repeatedly pass in and out
of the last closed flux surface, in the finite beta plasma of the LHD. It is found that the number of re-entering
particles in the finite beta plasma is larger than that in the vacuum magnetic field. As a result, the role of re-
entering particles in the finite beta plasma of the LHD is more important than that in the vacuum magnetic field,
and the effect of the charge-exchange reaction on particle confinement in the finite beta plasma is large.
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1. Introduction
The Large Helical Device (LHD) is a heliotron-type

device with � = 2/m = 10, Ap = 5.8-8.3, Bax up to 3 T, and
a helical divertor [1]. The typical plasma major radius Rax

and the averaged plasma minor radius ap in vacuum are 3.6
and 0.64 m, respectively. Here, � and m are a poloidal and
toroidal period number of the helical coils, Ap is a plasma
aspect ratio, and Bax is the magnetic field strength at Rax.

In recent experiments using the LHD, the volume-
averaged beta value 〈βdia〉 reached 4.5% by neutral beam
injection (NBI) heating [2]. As is well known, an equi-
librium magnetic field in a finite beta plasma of the LHD
differs significantly from a vacuum magnetic field (Fig. 1).
The magnetic axis shifts the torus outward because of the
Shafranov shift. In addition, the flux surfaces in the pe-
riphery of the plasma are destroyed by the finite beta ef-
fect [3]. As a result, the volume of the last closed flux sur-
face (LCFS) becomes small.

Effective plasma heating by high-energy particles pro-
duced by NBI is required in order to achieve a high beta
value. Therefore, the behavior of high-energy particles in
a finite beta plasma is important in studies on plasma heat-
ing. In particular, it is of great importance in heliotoron-
type devices such as the LHD, since the confinement of
high-energy particles in heliotron devices has been be-
lieved to be poor. The behavior of high-energy particles
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in the finite beta plasmas of the LHD has been studied
using the Boozer coordinate system [4, 5]. Although the
flux surfaces in the periphery of the finite beta plasma
are supposed to be destroyed, closed flux surfaces are as-
sumed in the Boozer coordinates. Therefore, high-energy
particles in the finite beta plasmas cannot be accurately
traced in the Boozer coordinates. Moreover, in studies
using the Boozer coordinates, the particles passing out of
the LCFS have been regarded as lost particles since the
particle-loss boundary has usually been set on the LCFS.

Fig. 1 Poincaré plots of the magnetic field lines on the horizon-
tally elongated poloidal plane in the LHD in the case of
(a) vacuum magnetic field (〈β〉 = 0%) and (b) finite beta
plasma (〈β〉 = 2.7%). Black points denote the LCFS and
gray points denote the magnetic field lines. The vacuum
vessel wall and helical coils of the LHD are also shown.
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On the other hand, particle orbit analyses, in which the
particle-loss boundary is set on the vacuum vessel wall,
have been performed. In these analyses, it has been shown
that re-entering particles, which repeatedly pass in and out
of the LCFS, exist in the vacuum magnetic field and that
they are confined within the vacuum vessel wall for a long
time [6–8]. In particle orbit analysis using the Boozer coor-
dinates, the number of lost particles could be overestimated
because the re-entering particles are usually regarded as
lost particles.

We numerically traced high-energy particles in the fi-
nite beta plasma of the LHD with appropriately treating the
re-entering particles. We investigate the high-energy parti-
cle orbits in the finite beta plasma by comparing them with
those in the vacuum magnetic field. The high-beta exper-
iments in the LHD have been conducted at Bax � 0.5 T
[2]. We also investigate the particle orbits in the finite
beta plasma for the case of Bax = 0.5 T. The number of
re-entering particles in the finite beta plasmas might be
larger than that in the vacuum magnetic field, since the
volume of the LCFS in the finite beta plasmas becomes
small. Therefore, the role of re-entering particles in the fi-
nite beta plasma might be more important than that in the
vacuum magnetic field. We examine the effect of the re-
entering particles on particle confinement in the finite beta
plasma of the LHD. The re-entering particles might be
lost because of a charge-exchange reaction with the neu-
tral particles, since the re-entering particles pass through
the peripheral region, in which the neutral particle density
is higher than that in the core. Thus, we study the effect of
the charge-exchange reaction on the re-entering particles.

In Sec. 2, the numerical model and initial conditions
used for our calculations are described. The results of these
calculations are summarized in Sec. 3. Section 4 is devoted
to the discussion. the conclusion is provided in Sec. 5.

2. Method
In order to trace the particles, we use the equilibrium

magnetic fields obtained by the three-dimensional magne-
tohydrodynamic (MHD) equilibrium code, HINT [9, 10],
in which the existence of nested flux surfaces is not as-
sumed. The equilibrium magnetic fields used in our cal-
culations are (i) Bax = 3 T, 〈β〉 = 0%, and Rax = 3.6 m,
(ii) Bax = 3 T, 〈β〉 = 2.7%, and Rax � 3.9 m, and
(iii) Bax = 0.5 T, 〈β〉 = 2.7%, and Rax � 3.9 m. As
mentioned above, the equilibrium magnetic field differs
significantly from the vacuum magnetic field as the beta
value increases. For example, the magnetic axis shifts from
Rax = 3.6 m (〈β〉 =0%) to Rax � 3.9 m (〈β〉 = 2.7%). In
addition, the position of the LCFS at the inner side of the
torus changes from R � 2.76 m (〈β〉 = 0%) to R � 3.03 m
(〈β〉 = 2.7%) on the horizontally elongated poloidal plane.
In contrast, the position of the LCFS at the outer side of
the torus rarely changes.

We trace the particles by numerically solving the

guiding-center equations in a collisionless case. In order
to trace the re-entering particles appropriately, the particle-
loss boundary must be set on the vacuum vessel wall,
i.e., the particles reaching the vacuum vessel wall are re-
garded as the lost particles. Therefore, the rotating helical
coordinate system [11] is adopted. We use the 6th-order
Runge-Kutta formulas [12] and three-dimensional higher-
order spline function [13] to accurately trace the compli-
cated orbits of the particles in the plasma periphery.

The initial conditions are determined as follows. The
traced particle is a proton, whose initial energy is assumed
to be 100 keV with reference to the energy of the NBI in the
LHD (180 keV, 50 keV). The starting points of the protons
are set on the horizontally elongated poloidal plane as

R = 2.65 + 0.05nR (nR = 0, 1, · · · , 45) m,

Z = 0,

φ = 0, (1)

where (R, Z, φ) are the cylindrical coordinates; R is the
major radius, and φ is the toroidal angle. The initial pitch
angles χ0 are varied from 0.05π to 0.95π with a step size of
0.05π. The protons with these initial conditions are traced
for a period of 30 ms. Note that the energy relaxation time
for a 100 keV proton in the plasma, whose temperature is
3 keV and density is 1020 m−3, is 27 ms.

3. Results
Based on the results of particle orbit tracing, we clas-

sify the particles in the LHD into three groups: passing
particles, banana-orbit particles, and chaotic-orbit parti-
cles [14]. The passing particles are not trapped by ei-
ther the helical or toroidal ripples and move approximately
along the magnetic field lines. The banana-orbit particles
are continuously trapped by the helical ripple and rotate in
the poloidal direction. The chaotic-orbit particles repeat-
edly transit between the localized orbit in the inner side
of the torus and the blocked orbit [15] in the outer side
of the torus. Figure 2 shows the typical orbits of three
groups in magnetic field (i) (Bax = 3 T, 〈β〉 = 0%, and
Rax = 3.6 m). The left-hand sides in Fig. 2 are Poincaré
plots of the particles on the horizontally elongated poloidal
plane. The right-hand sides in Fig. 2 are particle orbit
projections on the poloidal plane in (ψ − θ) coordinates,
where ψ is the magnetic flux, and θ is the poloidal angle.
Both the passing and banana-orbit particles form closed
drift surfaces (Figs. 2 (a), (b)). However, the passing and
banana-orbit particles are lost when they drift outside the
stochastic (chaotic field line) region [16]. The chaotic-orbit
particles repeatedly transit between the localized orbit and
the blocked orbit and do not form closed drift surfaces [15]
(Fig. 2 (c)). The particle orbits in the finite beta plasma of
the LHD are studied based on this classification.
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Fig. 2 Typical orbits of the particles in magnetic field (i) (Bax =

3 T, 〈β〉 = 0%, and Rax = 3.6 m). (a) Passing, (b) banana-
orbit, and (c) chaotic-orbit particles are traced from R =
4.05 m, Z = 0, and φ = 0. The left-hand sides of (a), (b),
and (c) are the Poincaré plots of the particles on the hor-
izontally elongated poloidal plane. The right-hand sides
of (a), (b), and (c) are the particle orbit projections on
the poloidal plane in (ψ − θ) coordinates, where ψ is the
magnetic fluxs, and θ is the poloidal angle.

3.1 Magnetic field (i) (Bax = 3 T, 〈β〉 = 0%,
and Rax = 3.6 m)

We compare the particle orbits in the finite beta
plasma 〈β〉 = 2.7% with those in the vacuum magnetic
field 〈β〉 = 0% in order to investigate the finite beta effects
on the particle orbits. Figure 3 shows the particle orbit
classifications in magnetic field (i) (Bax = 3 T, 〈β〉 = 0%,
and Rax = 3.6 m) in the space relating to the starting points
versus the initial pitch angles. The horizontal axis is the
major radius of the starting points set on the line of Z = 0
on the horizontally elongated poloidal plane. The vertical
axis denotes the initial pitch angles divided by π. The po-

Fig. 3 Particle orbit classifications in magnetic field (i) (Bax =

3 T, 〈β〉 = 0%, and Rax = 3.6 m) in the space relating to
the starting points versus the initial pitch angles. The hor-
izontal axis is the major radius (R) of the starting points
set on the line of Z = 0 on the horizontally elongated
poloidal plane. The vertical axis denotes the initial pitch
angles (χ0) divided by π. The red squares show the lost
particles, i.e., the particles reaching the vacuum vessel
wall within 30 ms. The positions of the magnetic axis
and the LCFS on the line of Z = 0 on the horizontally
elongated poloidal plane are also shown.

sitions of the magnetic axis and the LCFS on the line of
Z = 0 on the horizontally elongated poloidal plane are also
shown. The red squares denote the lost particles, i.e., the
particles reaching the vacuum vessel wall within 30 ms.

Almost all the particles traced from near the magnetic
axis become passing particles independent of the initial
pitch angles. As the starting points are close to the LCFS,
the range of the initial pitch angles that define the particles
as passing particles becomes narrow. In the particles from
near the LCFS, only the particles with χ0 � 0 or χ0 � π be-
come passing particles. On the other hand, particles with
χ0 � π/2 become banana-orbit particles. As the starting
points are close to the LCFS, the range of the initial pitch
angles that define the particles as the banana-orbit particles
becomes wide. In the space relating to the starting points
versus the initial pitch angles, the chaotic-orbit particles
exist in the region almost surrounding the banana-orbit par-
ticles. However, some chaotic-orbit particles traced from
3.1 m ≤ R ≤ 4.3 m become lost particles.

The re-entering particles exist as particles traced from
near the LCFS independent of particle orbit classifications.
On the other hand, the re-entering particles traced from
3.1 m ≤ R ≤ 4.3 m are only chaotic-orbit particles.

3.2 Magnetic field (ii) (Bax = 3 T, 〈β〉 =
2.7%, and Rax � 3.9 m)

Figure 4 shows the particle orbit classifications in
magnetic field (ii) (Bax = 3 T, 〈β〉 = 2.7%, and Rax �
3.9 m) in the space relating to the starting points versus

016-3



Plasma and Fusion Research: Regular Articles Volume 3, 016 (2008)

Fig. 4 Particle orbit classifications in magnetic field (ii) (Bax =

3 T, 〈β〉 = 2.7%, and Rax � 3.9 m) in the space relating to
the starting points versus the initial pitch angles.

the initial pitch angles. The initial conditions of the cal-
culation shown in Fig. 4 are the same as those shown in
Fig. 3, except for the averaged beta 〈β〉. The positions of
the magnetic axis and the LCFS on the line of Z = 0 on
the horizontally elongated poloidal plane are also shown
in Fig. 4. As shown in Fig. 1, the magnetic axis shifts from
Rax = 3.6 m to Rax � 3.9 m. The positions of the LCFS
at both the inner and outer sides of the torus move to the
plasma center. As a result, the minor radius of the closed
flux surfaces on the line of Z = 0 on the horizontally elon-
gated poloidal plane in 〈β〉 = 2.7% become smaller by
about 20% compared to those in 〈β〉 = 0%. The center of
the LCFS shifts in the direction of the major radius, since
the position of the LCFS at the inner side of the torus shifts
further than that at the outer side of the torus.

Comparing Fig. 4 (〈β〉 = 2.7%) with Fig. 3 (〈β〉 =
0%), the following differences can be observed. In 〈β〉 =
2.7%, the number of chaotic-orbit particles decreases.
Moreover, the number of lost particles traced from the in-
ner side of the torus is larger than that in 〈β〉 = 0% because
of the large shift of the LCFS at the inner side of the torus
in the direction of the major radius. Excluding these differ-
ences, there is no significant difference in the particle orbit
classifications in the space relating to the starting points
versus the initial pitch angles.

It is seen from Fig. 4 (〈β〉 = 2.7%) that particles traced
from almost all starting points become re-entering parti-
cles. Here, we describe the re-entering particle traced from
3.6 m ≤ R ≤ 4.4 m. In the case of 〈β〉 = 0%, only the
chaotic-orbit particles become re-entering particles. In the
case of 〈β〉 = 2.7%, not only chaotic-orbit particles but
also banana-orbit particles become re-entering particles.
As mentioned above, it should be noted that the banana-
orbit particles form the closed drift surface.

We investigate the particles forming the closed drift
surfaces, i.e., the passing and banana-orbit particles. Fig-
ure 5 shows the typical orbits of these particles in 〈β〉 =

Fig. 5 Typical orbits of the passing and banana-orbit particles in
(ψ − θ) coordinates. These particles are traced from the
same starting points in (ψ − θ) coordinates. Black lines
denote the orbits in the case of magnetic field (ii) (Bax =

3 T, 〈β〉 = 2.7%, and Rax � 3.9 m) and gray lines denote
the orbits in the case of magnetic field (i) (Bax = 3 T,
〈β〉 = 0%, and Rax = 3.6 m). The flux surfaces at the
starting point and the LCFS are shown for references.

Fig. 6 The cross-lines of B = const. plane and B · ∇B = 0 plane
with (B · ∇)2B > 0 in the case of (a) magnetic field (i)
(Bax = 3 T, 〈β〉 = 0%, and Rax = 3.6 m) and (b) magnetic
field (ii) (Bax = 3 T, 〈β〉 = 2.7%, and Rax � 3.9 m). The
flux surfaces are also shown as gray lines.

2.7%. In (ψ − θ) coordinates, the orbit of the passing par-
ticle in 〈β〉 = 2.7% almost agrees with that in 〈β〉 = 0%
(Fig. 5 (a)). In the rotating helical coordinate system, how-
ever, there is a significant difference in the orbits of the
passing particles between 〈β〉 = 0% and 〈β〉 = 2.7%. In
contrast, the orbit of banana-orbit particles in 〈β〉 = 2.7%
significantly differs from that in 〈β〉 = 0% (Fig. 5 (b)). In
〈β〉 = 2.7%, the banana-orbit particle moves across the
flux surfaces and reaches the neighborhood of the LCFS.
Therefore, most of the banana-orbit particles become re-
entering particles in the case of 〈β〉 = 2.7%. On the other
hand, the banana-orbit particles in 〈β〉 = 0% follow the or-
bit nearly concentrically with the flux surfaces in (ψ − θ)
coordinates. Thus, there are no “re-entering banana-orbit
particles” with the exception of the particles traced from
the starting points near the LCFS.

In order to determine the cause of the difference in
the banana orbits, in Fig. 6, we draw the cross-lines of
B = const. plane and B · ∇B = 0 plane with (B · ∇)2B > 0,
which approximately give the orbits of deeply trapped par-
ticles, i.e., the banana-orbit particles [16]. It is noted that
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the cross-lines of B = const. plane and B · ∇B = 0 plane
with (B · ∇)2B > 0 are almost the same as the mod-Bmin

contours in the Boozer coordinates. As shown in Fig. 6 (a),
the cross-lines of B = const. plane and B · ∇B = 0 plane
with (B · ∇)2B > 0 are concentric with the flux surfaces. In
contrast, the cross-lines of B = const. plane and B ·∇B = 0
plane with (B · ∇)2B > 0 in the finite beta plasma devi-
ate from the flux surfaces (Fig. 6 (b)). The difference in the
banana orbits shown in Fig. 5 (b) is attributed to this differ-
ence in the cross-lines of B = const. plane and B · ∇B = 0
plane with (B · ∇)2B > 0. The difference in the cross-lines
of B = const. plane and B·∇B = 0 plane with (B·∇)2B > 0
shown in Fig. 6 is caused because the distribution of the
magnetic field strength in the finite beta plasmas, in which
the structure of the flux surfaces varies significantly from
〈β〉 = 0%, rarely changes.

3.3 Magnetic field (iii) (Bax = 0.5 T, 〈β〉 =
2.7%, and Rax � 3.9 m)

We investigate the effects of the magnetic field
strength on particle orbits by setting Bax to 0.5 T. As men-
tioned in Sec. 1, Bax = 0.5 T is almost the same as the
magnetic field strength used in high-beta experiments in
the LHD [2]. Figure 7 shows the particle orbit classifica-
tions in magnetic field (iii) (Bax = 0.5 T, 〈β〉 = 2.7%, and
Rax � 3.9 m) in the space relating to the starting points ver-
sus the initial pitch angles. The initial conditions of the
calculation shown in Fig. 7 are the same as those shown in
Fig. 4, except for the magnetic field strength. The positions
of the magnetic axis and the LCFS are also shown.

In the particles traced from 3.1 m ≤ R ≤ 4.3 m, the
number of lost particles in Bax = 0.5 T is larger than that in
Bax = 3 T. In particular, most of the particles traced from
the inner side of the torus with χ0 < 0.5π and those traced
from the outer side of the torus with χ > 0.5π are lost,
while such particles are confined in the case of Bax = 3 T.

Fig. 7 Particle orbit classifications in magnetic field (iii) (Bax =

0.5 T, 〈β〉 = 2.7%, and Rax � 3.9 m) in the space relating
to the starting points versus the initial pitch angles.

The number of chaotic-orbit particles in Bax = 0.5 T
increases compared with that in Bax = 3 T. All of the
chaotic-orbit particles in Bax = 0.5 T are lost within 30 ms.
Particles that have the same initial conditions as those of
these chaotic-orbit particles are passing or banana-orbit
particles and are confined within 30 ms in the case of
Bax = 3 T.

In magnetic field (iii) (Bax = 0.5 T, 〈β〉 = 2.7%, and
Rax � 3.9 m), the re-entering particles exist in the parti-
cles traced from almost all starting points independent of
particle orbit classifications. In particular, regarding the
particles traced from 3.0 m ≤ R ≤ 3.8 m with χ0 < 0.5π,
almost all the passing particles are re-entering particles
in magnetic field (iii) (Bax = 0.5 T, 〈β〉 = 2.7%, and
Rax � 3.9 m). In magnetic field (ii) (Bax = 3 T, 〈β〉 = 2.7%,
and Rax � 3.9 m), no re-entering particle exists as passing
particles traced from 3.3 m ≤ R ≤ 4.3 m.

We also investigate the particles forming the closed
drift surfaces in magnetic field (iii) (Bax = 0.5 T, 〈β〉 =
2.7%, and Rax � 3.9 m). Figure 8 shows the typical orbit
of these particles. Compared with the orbit of the pass-
ing particle in Bax = 3 T, the deviation of the orbit of the
passing particle in Bax = 0.5 T from the flux surfaces is
large. In order to examine the cause of this large deviation
of the orbit of the passing particle in Bax = 0.5 T, we es-
timate the ∇B drift velocities (V∇B) at the starting points.
In Bax = 0.5 T, V∇B = 1.4 × 104 m/s, and in Bax = 3 T,
V∇B = 0.23 × 104 m/s. V∇B in Bax = 0.5 T is about six
times larger than that in Bax = 3 T. Because the deviation
of the orbit of the passing particle from the flux surfaces
is approximately proportional to V∇B, the deviation of the
orbit of the passing particle in Bax = 0.5 T from the flux
surfaces is larger than that in Bax = 3 T. The orbit of the
passing particle in Bax = 0.5 T has a wide minor radial
width, which will be discussed in Sec. 4.

Fig. 8 Typical orbits of the passing and banana-orbit particles in
magnetic field (iii) (Bax = 0.5 T, 〈β〉 = 2.7%, and Rax �
3.9 m) in (ψ − θ) coordinates. These particles are traced
from the same starting points in (ψ−θ) coordinates. Black
lines denote the orbits in the case of magnetic field (ii)
(Bax = 3 T, 〈β〉 = 2.7%, and Rax � 3.9 m) and gray lines
the orbits in the case of the magnetic field (iii) (Bax =

0.5 T, 〈β〉 = 2.7%, and Rax � 3.9 m). The flux surfaces at
the starting point and the LCFS are shown for reference.
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Fig. 9 Particle-loss ratio after 30 ms particle tracing. The horizontal axis is the major radius of the starting points set on the line of Z = 0
on the horizontally elongated poloidal plane. The vertical axis denotes the particle-loss ratio averaged over the pitch angles at each
starting point. The positions of the magnetic axis and the LCFS on the line of Z = 0 on the horizontally elongated poloidal plane
are also shown.

It is seen from Fig. 8 (b) that the banana orbit in Bax =

0.5 T almost agrees with that in Bax = 3 T. This is because
the shapes of the cross-lines of B = const. plane and B ·
∇B = 0 plane with (B · ∇)2B > 0 are independent of the
magnetic field strength.

3.4 Effects of re-entering particles on parti-
cle confinement

In order to investigate the effects of the re-entering

particles on particle confinement, we evaluate the particle-
loss ratio averaged over pitch angles at each starting points
[14] in all the magnetic fields. We also investigate the
effect of the charge-exchange reaction on the re-entering
particles. Thus, the following assumptions are made. The
charge-exchange reaction occurs only with the hydrogen
atoms. The density of hydrogen atoms (nH) is uniform out-
side the LCFS and nH = 0 inside the LCFS. After J-th
time re-entering, the existing probability of the proton is

016-6



Plasma and Fusion Research: Regular Articles Volume 3, 016 (2008)

approximately given as

αJ = exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
λ

⎛⎜⎜⎜⎜⎜⎜⎝
J∑

j=1

s j

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

where s j is the path length of j-th time re-entering out-
side the LCFS, and λ is the mean free path of the charge-
exchange reaction determined by λ = 1/nHσH. Here, σH is
the cross-section of the charge-exchange reaction between
a proton and a hydrogen atom. When the energy of the pro-
ton is 100 keV, σH = 9.71 × 10−22 m2 [17]. Figure 9 shows
the particle-loss ratio after tracing particles for 30 ms. Fig-
ures 9 (a) and (b) show the results in magnetic field (i),
Figs. 9 (c) and (d) in magnetic field (ii), and Figs. 9 (e) and
(f) in magnetic field (iii). In Fig. 9, the dashed-dotted lines
correspond to the nH = 0 case, which does not show any
particle loss due to the charge-exchange reaction. The
dashed lines correspond to the nH = ∞ case, in which
the re-entering particles are regarded as lost particles. The
solid lines denote the nH = 1017 m−3 and the dashed two-
dotted lines denote nH = 1018 m−3. The positions of the
magnetic axis and the LCFS on the line of Z = 0 on the
horizontally elongated poloidal plane are also shown.

It is seen from Fig. 9 (a) that the particle-loss ratio in
the case of nH = 0 (dashed-dotted line) is lower than that
in the case of nH = ∞ (dashed line). This implies that re-
entering particles exist in the vacuum magnetic field. Com-
paring Figs. 9 (c) and (e) with Fig. 9 (a), the differences in
the particle-loss ratio between nH = 0 and nH = ∞ cases
is remarkable in 〈β〉 = 2.7%. This shows that the number
of re-entering particles in the finite beta plasma is larger
than that in the vacuum magnetic field. Therefore, the role
of the re-entering particles in the finite beta plasmas of the
LHD is more important than that in the vacuum magnetic
field. The particle-loss ratios in the nH = ∞ cases (dashed
lines in Figs. 9 (a), (c), and (e)) are the same as those in
the particle orbit analysis using the Boozer coordinates, in
which the particle-loss boundary is set on the LCFS. Thus,
the difference in the particle-loss ratios between nH = 0
and nH = ∞ cases (Figs. 9 (a), (c), and (e)) implies that
the number of lost particles is overestimated in the particle
orbit analysis using the Boozer coordinates.

Next, the particle-loss ratios when the particle loss due
to the charge-exchange reaction is ignored (nH = 0) are
discussed. It is seen from Figs. 9 (a) and (c) that there is no
significant difference in the dashed-dotted lines (nH = 0)
between the 〈β〉 = 0% and 〈β〉 = 2.7% cases. Thus, most
particles confined in the case of 〈β〉 = 0% are also confined
in the case of 〈β〉 = 2.7% when the particle loss due to the
charge-exchange reaction is ignored. On the other hand,
the particle-loss ratio in Bax = 0.5 T is higher than that in
Bax = 3 T. This is because the number of lost particles in
Bax = 0.5 T is larger than that in Bax = 3 T (Fig. 7).

Independent of the magnetic field, the particle-loss ra-
tio in the case of nH = 1018 m−3 are almost the same as that
in the case of nH = ∞. In the case of nH = ∞, there are

no re-entering particles. On the other hand, in the case
of nH = 1018 m−3, the lost particles due to the charge-
exchange can pass in and out of the LCFS (re-enter) many
times. The particle-loss ratio in the case of nH = 1017 m−3

is a little lower than that in the case of nH = 1018 m−3.
These results imply that the loss of re-entering particles
due to the charge-exchange reaction depends on the den-
sity of neutral particles in the periphery.

In magnetic field (i) (Bax = 3 T, 〈β〉 = 0%, and
Rax = 3.6 m), the particle-loss ratios in the nH = 1018 m−3

and nH = 1017 m−3 cases are almost the same as that in the
nH = 0 case (Figs. 9 (a) and (b)). This implies that most of
the re-entering particles consist of “lost” chaotic-orbit par-
ticles without a particle loss cased by the charge-exchange
reaction in magnetic field (i) (Bax = 3 T, 〈β〉 = 0%, and
Rax = 3.6 m). Thus, the charge-exchange reaction in mag-
netic field (i) (Bax = 3 T, 〈β〉 = 0%, and Rax = 3.6 m)
rarely affects particle confinement. On the other hand, in
magnetic fields (ii) and (iii) (in the case of 〈β〉 = 2.7%), the
particle-loss ratios in the nH = 1018 m−3 and nH = 1017 m−3

cases are higher than that in the nH = 0 case (Figs. 9 (c)–
(f)).

4. Discussion
We can clarify the cause of the decrease in the num-

ber of chaotic-orbit particles when the beta value increases.
Figure 10 shows the variation of the magnetic field strength
along the magnetic field line traced from R = 4.1 m with
v‖ > 0. The horizontal axis is the connection length of the
magnetic field line. The vertical axis denotes B̂ = B/Bstart.
Here, Bstart is the magnetic field strength at the starting
point. It is seen that the toroidal ripple in the case of
〈β〉 = 2.7% is shallower than that in the case of 〈β〉 = 0%.
This implies that some particles trapped by toroidal ripples

Fig. 10 Variation of the magnetic field strength along the mag-
netic field line traced from R = 4.1 m with v‖ > 0. The
horizontal axis is the connection length of the magnetic
field line. The vertical axis denotes B̂ = B/Bstart. Here,
Bstart is the magnetic field strength at the starting point.
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in the case of 〈β〉 = 0% cannot be trapped in the case of
〈β〉 = 2.7%. Such particles become passing particles when
〈β〉 = 2.7%. Therefore, the number of chaotic-orbit par-
ticles, which repeatedly transit between the localized orbit
and the blocked orbit, decreases when 〈β〉 = 2.7%. As
a result, the number of passing particles increases when
〈β〉 = 2.7%.

Next, we investigate the cause of the increase in the
number of lost chaotic-orbit particles in Bax = 0.5 T. Fig-
ure 11 shows the typical orbits of the chaotic orbit particles
traced from R = 4.1 m in two magnetic fields (Bax = 3 T,
〈β〉 = 0% and Bax = 2 T, 〈β〉 = 0%). The orbit of the
chaotic-orbit particle in the case of Bax = 2 T is widespread
compared with that in the case of Bax = 3 T. Therefore,
the chaotic-orbit particles in a weak magnetic field (as in
Bax = 0.5 T) easily reach the region outside the LCFS
or the chaotic field line region. Because the connection
lengths are short in such a region, most chaotic-orbit parti-
cles are lost in Bax = 0.5 T.

We investigate the minor radial width of a passing par-
ticle shown in Fig. 8. Particles are drifted by ∇θB with the
velocity (vθD) during poloidal rotations. Figure 12 shows
the directions of vθD and the typical orbit of a passing par-
ticle in Bax = 0.5 T. These particles alternately move to
the outer and inner sides in the minor radius direction be-
cause of vθD (Fig. 12 (a)). As a result, the passing particles
bounce between the inside and outside of the flux surface,
as shown in Fig. 12 (b). The diameter of this circular mo-
tion is the minor radial width of the passing particles. The

Fig. 11 Typical orbits of the chaotic-orbit particles traced from
R = 4.1 m in two magnetic fields: Bax = 3 T, 〈β〉 = 0%
(red) and Bax = 2 T, 〈β〉 = 0% (green). The LCFS is
shown for references.

minor radial width is approximately given by

ΔθD ∼ |uθD| ×
∣∣∣∣∣∣ (π/10)R0

u‖

∣∣∣∣∣∣
= M

∣∣∣∣∣∣
(
u2⊥
2

)
B × ∇θB

qB3

∣∣∣∣∣∣ ×
∣∣∣∣∣∣ (π/10)R0

u‖

∣∣∣∣∣∣ , (3)

where v⊥ and v‖ are the velocity perpendicular and paral-
lel to the magnetic field line, M is the particle mass, and
q is the electric charge. Here, it is assumed that the |uθD|
of the passing particle is constant when the passing parti-
cle moves from φ = 0 to φ = 0.1π (a half helical pitch).
In the case of ∇θB/B = 0.5 m−1, the minor radial width
ΔθD becomes 1.2 × 10−2 m (Bax = 0.5 T) and 0.2 × 10−2 m
(Bax = 3 T). These values are smaller than the averaged
minor radius of the LHD.

In this paper, the effects of collisions between parti-
cles are not considered. Of course, collisions have sig-
nificant effects on the orbit of a particle, particularly on a
re-entering particle in the finite beta plasma. A particle or-
bit analysis that includes Coulomb collisions is planned for
the future.

As mentioned above, the loss of the re-entering par-
ticles due to the charge-exchange reaction depends on the
density of the neutral particles in the periphery. In order to
trace the re-entering particles more precisely, a study using
an accurate distribution of the density of the neutrals is re-
quired. The energy of the particles also affects the charge-
exchange reaction rate. A calculation that includes energy
scattering is therefore needed.

In this study, 100 keV proton orbits are investigated
by numerically solving the guiding-center equations. The
Larmor radius of 100 keV protons in Bax = 3 T is about
0.015 m. On the other hand, the Larmor radius of 100 keV
protons in Bax = 0.5 T is about 0.091 m, i.e., about a sev-
enth of the averaged plasma minor radius (ap = 0.64 m).
In Bax = 0.5 T, the 100 keV proton could not be accurately
traced by solving the guiding-center equations. We will
investigate the particle orbits by numerically solving the
equation of motion in the near future.

Fig. 12 Directions of uθD and the typical orbit of a passing particle
in magnetic field (iii) (Bax = 0.5 T, 〈β〉 = 2.7%, and Rax �
3.9 m). (a) Directions of uθD in the model orbit of a passing
particle. The black arrow shows the model orbit, and the
gray arrows show the directions of uθD. (b) Typical orbit
of a passing particle in magnetic field (iii).
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5. Conclusion
By numerically solving the guiding-center equations,

we have traced high-energy particles in an equilibrium
magnetic field in a finite beta plasma of the LHD calculated
using HINT. We have appropriately treated re-entering
particles by setting the particle-loss boundary on the vac-
uum vessel wall. We have investigated the difference in the
particle orbits caused by the volume-averaged beta value
and/or the magnetic field strength. In addition, we have
investigated the effects of the charge-exchange reaction on
the re-entering particles. The following results have been
obtained.

There is no significant difference in the particle orbit
classifications in the space relating to the starting points
versus the initial pitch angles between 〈β〉 = 0% and
〈β〉 = 2.7% in the cases of Bax = 3 T. The deviation of the
orbit of a passing particle from the flux surface is indepen-
dent of the beta value. In contrast, the deviation of the orbit
of a banana-orbit particle from the flux surface strongly de-
pends on the beta value. This is because the distribution of
the magnetic field strength in finite beta plasmas, in which
the structure of the flux surfaces significantly changes from
the vacuum magnetic field, rarely changes.

The number of chaotic-orbit particles in Bax = 0.5 T
increases compared with that in Bax = 3 T, and all chaotic-
orbit particles are lost within 30 ms. When changing the
magnetic field from Bax = 3 T to Bax = 0.5 T, the deviation
of the orbit of a passing particle becomes large. It is also
found that the drift caused by ∇θB determines the minor
radial width of the passing particles. On the other hand,
a banana orbit in Bax = 0.5 T almost agrees with that in
Bax = 3 T. This is because the shapes of the cross-lines of
B = const. plane and B · ∇B = 0 plane with (B · ∇)2B > 0
are independent of the magnetic field strength.

Re-entering particles, whose existence has been
shown in the vacuum magnetic field, are also found to ex-
ist in the finite beta plasma independent of the magnetic
field strength. The number of re-entering particles in the fi-
nite beta plasma is larger than that in the vacuum magnetic
field. Particles traced from almost all starting points can
be re-entering particles in the finite beta plasma. There-
fore, the role of re-entering particles in the finite beta plas-
mas of the LHD is more important than that in the vac-
uum magnetic field. When the peripheral neutral density

is small (nH � 1017 m−3), re-entering particles play more
important roles in processes such as plasma heating.

It is confirmed that the loss of re-entering particles due
to the charge-exchange reaction depends on the density of
neutrals in the periphery. Although the charge-exchange
reaction rarely affects particle confinement in the vacuum
magnetic field, the effect of the charge-exchange reaction
on particle confinement in the finite beta plasma is large.
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