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Effects of Ion Orbits Due to Potential Formation on Transverse Ion
Transport in the Thermal Barrier Region of GAMMA10
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Transverse ion loss in the thermal barrier region of the GAMMA10 tandem mirror is investigated with the
mapping equations of ion drift orbits. The effects of a non-axisymmetric electrostatic potential in the thermal
barrier are taken into account. The local stability of orbits and its diffusion are calculated numerically and these
are compared with the results of A.B. Rechester and R.B. White [1]. It is found that there are two kinds of the
transverse ion transport. One is chaotic ion orbits due to unstable ion drift, which cause cross-field ion diffusion.
Another is the enhanced effects of ion radial step sizes on the transverse diffusion, because banana-like ion drift
orbits appear due to the non-axisymmetric electrostatic potential formation.
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1. Introduction
The GAMMA10 tandem mirror has the axisymmetric

end-mirror cells, where ion density in the thermal barrier is
much less than that in the central cell, which suggests that
ions escape rapidly from the thermal barrier region. It is
observed that plug potential profile is not axisymmetric [2].
And, the calculation of ion orbits reveals that there is a
transition from regular orbits to chaotic ones as the non-
axisymmetric electrostatic potential increases [3].

In the recent research by mapping equation, the dif-
fusion of ions do not occur as long as only one mode per-
turbation is added to the axisymmetric electrostatic poten-
tial, but, when one more small amplitude of additional per-
turbations are added further, the diffusion of ions is ob-
served [4].

In the present work, one mode of perturbation is added
to the electrostatic potential corresponding to radial E × B
drift shear as the amount of azimuthal shift ∆θ = ψ1/2,
and resultant mapping equation is studied. The details of
ion orbits (fixed points, local stability of orbits, diffusion
) are analyzed by the mapping equation. The diffusion co-
efficient is compared with that obtained by A.B. Rechester
and R.B. White [1].

2. Mapping Model
Radial and azimuthal intersection points of an ion with

an eqnatorial plane at the midplane in the mirror cell are
represented by the mapping equation [4]. Electrostatic po-
tential profile in the plug region is assumed as
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φ(ψ, θ, z) = φ0

[
1 − (ψ/ψw)3/2

]
f or z ≤ zp − δzp

φ(ψ, θ, z) = φ1 cos θ f or z > zp − δzp , (1)

where zp is the axial coordinate at the plug, and δzp is the
half width of an axial profile of plug potential. Henceforth
we adopt the coordinates (ψ, θ, z), where magnetic field B
is represented by B = ∇ψ×∇θ. We use the following map-
ping equation

ψn+1 = ψn + K sin θn

θn+1 = θn + ψ
1/2
n+1 . (2)

Here K is a function of φ0 and φ1 in Eq. (1). Noting that
ψ = Bzr2/2 in the paraxial approximation, the profile of
Eq. (1) is φ(r, z) ∝ [1 − (r/rw)3]. We include the effects of
E×B drift shear for ∆θn ≡ θn+1 − θn = ψ

1/2
n+1 in Eq. (2). An-

alytically, some fixed points independent of K is obtained
from Eq. (2) as

(ψ f ixed, θ f ixed) = ((2πm)2, πn) for integers m, n (3)

where the relation

ψn+k = ψn, θn+k = θn + 2πm (4)

is satisfied.
The locations of fixed points dependent on K are de-

termined numerically. In Fig. 1, the points at the intersec-
tion of each curves are fixed points for K = 10, while orbits
of 49 ions are plotted by dots for the same amplitude of K,
where initial positions of the ions are evenly distributed
in the region of 0 ≤ ψ ≤ 20π2 and 0 ≤ θ < 2π. The solid
curves are given by ψn+1 = ψn, and the broken curves (1 pe-
riod) are the lines of θn+1 = θn+2πm, and the dotted curves
(2 period ) represent the lines of θn+1 = θn+ (2 m+1)π. The
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Fig. 1 The dependence of the locations of fixed points on K are
evaluated numerically. The points at the intersection of
each curves are fixed points for K = 10, while orbits of
49 ions are plotted in dots for same K, where initial po-
sitions of the ions are evenly distributed in the region of
0 ≤ ψ ≤ 20π2 and 0 ≤ θ < 2π.

other fixed points, which depend on K, can be seen in the
figure in addition to those given by Eqs. (3) and (4). And,
the obtained ion orbits show that the numerical positions
of fixed points are valid.

The stability of a fixed point is determined by a tan-
gent mapping as mapping of adjacent points (ψ, θ) and
(ψ + δψ, θ + δθ). After k iterations, Eq. (2) reduced to the
tangent mapping(

δψn+k

δθn+k

)
= M

(
δψn

δθn

)
(5)

M =



∂ψn+k

∂ψ

∂ψn+k

∂θ

∂θn+k

∂ψ

∂θn+k

∂θ



=

k−1∏
j=1


1 K cos θn+ j

1
2ψn+ j+1

1 +
K cos θn+ j

2ψn+ j+1

 , (6)

where the derivatives are evaluated at the fixed points. The
behavior around the fixed points are described by the eigen
equation

λ2 − Tr (M) λ + det (M) = 0 , (7)

Here det(M) = 1 because of area preserving map of
Eq. (2), and λ is the eigenvalue of matrix M which gives the
local stability of any points. In the case of Tr(M)2 − 4 < 0,
the eigenvalues are complex and so the tangent space or-
bit is stable. Figure 2 plots the stable (gray) and unstable
(white) regions calculated by Eq. (5). Here the same orbits
as in Fig. 1 are plotted. As K increases, the unstable re-
gion expands, the stable and unstable regions admix each
other in the region of small ψ. In Fig. 2, we observe that
stochastic orbits are dominate in that region and regular
orbits exist in the region ψ ≥ 2π2.

Fig. 2 The stable (gray) and unstable (white) regions are calcu-
lated by Eq. (5). The same orbits as in Fig. 1 are plotted.

For the regular orbits, the phase trajectory can be ob-
tained by the use of the secular perturbation theory. Equa-
tion (2) can be rewritten as differential equation by intro-
duction of the delta function in the equation of motion:

dψ
dt
= δ (t − n) K sin θ (8)

and

dθ
dt
= ψ1/2 , (9)

where the time variable t is measured in units of the num-
ber of bounces n. Equations (8) and (9) have a Hamiltonian
form

H = 2ψ3/2/3 +
∞∑

m=−∞
ei2πmtK cos θ , (10)

with ψ and θ as the canonical coordinates, where a fourier
representation of the delta function is used. In the region
of very small ψ, i.e.,

(θn+1 − θn) << 2π , (11)

Eq. (10) can be averaged over t to obtain a constant of mo-
tion;

〈H〉 = 2ψ3/2/3 + K cos θ = C , (12)

which gives the trajectories near ψ = 0.
Furthermore, transform to a coordinate system (ψ̂, θ̂)

around the period 1 fixed point of Eq. (3) is carried out as

ψ̂ = ψ − ψ f ixed , θ̂ = θ − θ f ixed , (13)

so that the following relation is satisfied.

θ̂n+1 − θ̂n << 2π . (14)

Using the variables (ψ̂, θ̂), Eqs. (8) and (9) take the form

dψ̂
dt
= δ(t − n)K sin θ̂ , (15)
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Fig. 3 The separatrix curves for Eqs. (12) and (18) are plotted by bold solid curves respectively for K = 1, 10, while the orbits of 3000
ions are plotted in dots, where initial positions of the ions are evenly distributed in the region of 0 ≤ θ < 2π at the four radial
positions ψ = π2, 4π2, 9π2, 16π2.

dθ̂
dt
=

ψ̂

2ψ1/2
f ixed

. (16)

Equations (14) and (15) can be integrated to obtain a new
Hamiltonian

Ĥ =
ψ̂2

4ψ1/2
f ixed

+

∞∑
m=−∞

ei2πmtK cos θ̂ . (17)

If the motion in the ψ̂ − θ̂ phase plane is slow on the time
scale t, Eq. (17) can be averaged over t to give the averaged
new Hamiltonian

〈Ĥ〉 = ψ̂2

4ψ1/2
f ixed

+ K cos θ̂ = C , (18)

which describes the trajectories near the period 1 fixed
points. The equi-contour surfaces of 〈H〉 and 〈Ĥ〉 consist
of closed orbits encircling a fixed point, where a separa-
trix is given by the maximum value of C when C = K. In
Fig. 3, the separatrix curves for Eqs. (12) and (18) are plot-
ted by bold solid curves respectively for K = 1, 10, while
the orbits of 3000 ions are plotted in dots, where initial po-
sitions of the ions are evenly distributed in the region of
0 ≤ θ < 2π at the four radial positions ψ = π2, 4π2, 9π2,
16π2. For K = 1, the separatrix curves around period 1
fixed points are obtained in Fig. 3 (a), and for K = 10 the
separatrix curves are different from the boundary of ion
motions, in the region of lower ψ in Fig. 3 (b).

3. Numerical Results for Diffusion
Coefficients
We now turn to diffusion for ions. A diffusion coeffi-

cient is given by

Dn =
〈∆ψ2

n〉
2n

=
1
2n

N∑
j=1

(ψn( j) − ψ0( j))2

N
, (19)

where n is iteration number and N is total test ion num-
ber, and the average is taken over test ions. The quasilinear
diffusion coefficient for mapping of Eq. (2) is written as

DQL =
D1

2
=

1
4π

∫ 2π

0
(∆ψ)2 dθ =

K2

4
, (20)

on the assumption that K 
 1. The diffusion coefficient in
Eq. (19) approaches that in Eq. (20) [5]. For the standard
mapping, where

ψn+1 = ψn + K sin θn

θn+1 = θn + ψn+1 , mod2π , (21)

the analytical diffusion coefficient for large K was obtained
by Rechester and White [1] as

Dn =
K2

2

[
1
2
− J2(K) − J2

1(K) + J2
2 (K) + J2

3(K)

]
.

(22)

Figure 4 shows the numerical results of diffusions by cal-
culating Eq. (2), and Eq. (21) where the periodic bound-
ary condition of mod2π for ψ is removed, and diffusion
by calculating the following mapping equation

ψn+1 = ψn + K sin θn

θn+1 = θn + ψ
2
n+1 , (23)

i.e., ∆θn = ψ2
n+1. The diffusion coefficients D50 for 3000

ions are calculated excluding the orbits trapped around the
fixed points, where initial positions of the ions are evenly
distributed in the region of 0 ≤ θ < 2π at ψ = π2 in
Fig. 4 (a) and ψ = 17π2 in Fig. 4 (b). The dots give the nu-
merical results of D50 normalized to quasilinear value in
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Fig. 4 The dots give the numerical results of D50 normalized to quasilinear value in Eq. (20), where the amplitude of perturbation K is
varied. The bold solid curve shows the analytical result of Eq. (22).

Eq. (20), where the amplitude of perturbation K is varied.
The bold solid curve shows the analytical result of Eq. (22).
The result for mapping Eq. (2) in Fig. 4 (b) suggests that
the existence of non-diffusing orbits lying inside the regu-
lar orbits enlarges the diffusion coefficient, because regular
motions are dominant over the chaotic motions in the re-
gion of large ψ for this mapping.

4. Summary
The mapping equation in non-axisymmetric potential

having radial E × B drift shear of electric field is given in
this study, in the case of azimuthal shift ∆θ = ψ1/2. By the
numerical calculation of this mapping equation, the posi-
tions of period 1 fixed points and the stability of ion orbits
around the fixed points are analyzed. The new Hamiltonian
obtained by secular perturbation theory gives the separa-
trix curves around elliptic fixed points applicable for small
amplitude K. The diffusion coefficients for mapping equa-
tions having several E × B drift shears are estimated and

compared with the analytical result obtained by Rechester
and White, in order to examine the effects of non-diffusing
orbits lying inside regular orbits on the diffusion coeffi-
cient. The numerical result by the mapping Eq. (2) having
the drift shear ∆θ = ψ1/2 shows that the orbits lying inside
regular orbits contributes to the growth of diffusion coeffi-
cient in the region of large ψ.
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