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A numerical method is described that can be used to estimate the source of neutral particles within a helical
plasma column as a function of the magnetic surface. The method is applicable to the data analysis of passive
line-integral diagnostics of escaping neutrals. The magnetic surface structure taken from magnetohydrodynamic
equilibrium calculations defines the kernel of the integral equation. A regularized solution is obtained over a dis-
crete grid by minimizing the appropriate objective functional. The corresponding linear system is solved in terms
of least squares using QR algorithm. The application is discussed to one particular charge-exchange diagnostic
on the Large Helical Device and the model profile reconstruction examples are presented.
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1. Introduction
Multidirectional nonperturbing charge-exchange di-

agnostics based on high resolution atom energy spectrom-
eters are used on the Large Helical Device (LHD) to study
the ion component heating mechanisms and fast ion con-
finement by measuring the escaping neutral particle fluxes.
The particle source f (ρ) is not localized in contrast to the
methods employing a diagnostic neutral particle beam or
charge exchange on a solid pellet ablation cloud. Several
possible approaches to the localization of such measure-
ments on LHD were overviewed in [1] where a general
description of the charge-exchange neutral particle diag-
nostic background, geometry of such experiments and the
formulation of the measured quantity may be found. A new
20-channel analyzer for simultaneous measurements of the
energy resolved neutral particle flux along twenty observa-
tion lines was described in [2].

This paper presents a numerical method realized
in FORTRAN for the calculation of the neutral parti-
cle source function radial distribution f (ρ) from line-
integrated passive measurement data. The basic integral
relation between these quantities was discussed in [3] for
LHD geometry along with the numerical simulation of the
measured fluxes. The source function reconstruction al-
gorithm requires the integral kernel calculation using the
known geometry of measurements and the magnetohydro-
dynamic (MHD) equilibrium data, a certain treatment of
the singularity at ρmin, and the application of linear regu-
larization techniques.
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2. Problem Formulation
It is assumed that the neutral particle flux is measured

from a thin viewing cone so that the source function in-
tegral over the observable plasma volume is reduced to
the sight line integral. The diagnostic étendue factor will
be omitted in the formulas herein. The attenuation of the
atomic flux along the observation direction is supposed to
be negligible. The relationship between the local source
function and the measured line integral flux is given by the
following Volterra integral equation of the first kind

1∫
ρ

K(ρ, ξ) f (ξ)dξ = Φ(ρ), (1)

where the kernel

K(ρ, ξ) = Q+(ρ, ξ) − Q−(ρ, ξ) (2)

has two branches Q+(ρ, ξ) = dΛ/dξ > 0 and Q−(ρ, ξ) =
dΛ/dξ < 0 reflecting the integration variable change from
the sight line distance Λ to the effective radius ξ along the
two different monotonicity intervals explained in Fig. 1 (a)
(negative branch from ξ = 1 to ξ = ρ and positive branch
from ξ = ρ to ξ = 1). These two branches shown in Fig. 1
(b) are not necessarily symmetric and depend on the mag-
netic surface geometry. For circular concentric isoilnes of
maximum radius a formula (1) simplifies to the classical
direct Abel transform and the analytical expression for the
kernel becomes

K(ρ, ξ) = 2aξ/
√
ξ2 − ρ2.

The kernels of the form (2) typically have an integrable
singularity at the lower integration limit. To reduce its in-

c© 2007 The Japan Society of Plasma
Science and Nuclear Fusion Research

S1074-1



Plasma and Fusion Research: Regular Articles Volume 2, S1074 (2007)

Fig. 1 (a) Two monotonicity intervals of the effective radius ξ
along the sight line distance Λ. (b) Positive and negative
branches of the general Abel transform kernel for an ar-
bitrary isoline shape.

fluence, one can perform a nonlinear change of the integra-
tion variable from ξ to t as follows

t =
√
ξ2 − ρ2. (3)

Explicit formulas for the kernel in some particular
cases of the magnetic surface shape can be found in [4].
For an arbitrary isoline shape it is practically comfortable
to find analytical approximations of Q+(ρ, ξ) and Q−(ρ, ξ)
functions for the diagnostic viewing direction using the
magnetic surface structure data obtained from MHD equi-
librium calculations for the particular plasma device.

Energy resolved fluxes are usually measured in exper-
iments. It should be noted that f (ρ) is then the source func-
tion of atoms in a certain energy range. Thus, a system
of equations (1) for each energy channel rather than one
equation should be solved to estimate the radially resolved
energy spectrum.

3. Solution Method
Consider a set of N chord integrated measurement re-

sults Φ j and let ρ j be the minimum effective radius along
the jth chord, j ∈ 1,N. This determines a, generally speak-
ing, non-uniform grid ρ1, . . . , ρN . The discretization of the
problem (1) using the trapezoidal formula leads to a system

of linear algebraic equations

Kf = Φ (4)

with an upper triangular N × N matrix K given by

Ki j =

{
κ jK(ρi, ρ j), j ≥ i
0, j < i

(5)

with

{
κ1 = 1/2(ρ2 − ρ1); κN = 1/2(ρN − ρN−1)
κ j = 1/2(ρ j+1 − ρ j−1), j ∈ 2,N − 1

The exact solution of (4) corresponds to zero value of
the 2-norm of the residual vector

R{ f } = ‖Kf −Φ‖2. (6)

Since the problem is known to be incorrectly posed, it is
suitable to apply Tikhonov regularization method [5–7] to
find the solution that minimizes the functional

Rα { f } = ‖Kf −Φ‖2 + α ‖Df‖2 . (7)

The vector Df is the discrete counterpart of the integral

1∫
0

∣∣∣ f ′(ξ)∣∣∣2 dξ ≈ 1
2

N∑
j=1

 ϕ j√
δ j


2

. (8)

The discretization is done again by the trapezoidal formula
and the central difference derivatives contain

δ1 = ρ2 − ρ1, ϕ1 = f2 − f1

δ j = ρ j+1 − ρ j−1, ϕ j = f j+1 − f j−1, j ∈ 2,N − 1
δN = ρN − ρN−1, ϕN = fN − fN−1

The right hand side of (8) has the form of the quadratic
norm of a vector Df, where D is a tridiagonal matrix

D1,1 = −1
/√

2δ1; DN,N = 1/
√

2δN

{
Di,i+1 = 1/

√
2δi

Di+1,i = −1/
√

2δi+1

for i ∈ 1,N − 1.
The requirement of the minimization of the functional

(7) is equivalent to the following overdetermined system of
2N linear algebraic equations[

K√
αD

]
f =

[
Φ

0

]
(9)

which is to be solved in the least squares sense. Either QR
algorithm or the system of normal equations can be used
for this purpose. In the former case a decomposition of the
2N × N matrix of system (9) is calculated to represent it
as a product of an orthogonal 2N × 2N matrix Q and an
upper triangular 2N × N matrix R. Since orthogonal trans-
formations preserve the 2-norm, the least squares condi-
tion reduces to a readily soluble upper triangular system.
In the latter case the least squares condition is re-written
in the form of a symmetric N × N system solved by stan-
dard methods. The detailed description of these methods is
given in the classical monograph [8].
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Fig. 2 Examples of the diagnostic cross-sections of the LHD
plasma column available for the fan pattern scanning ex-
periment with SDNPA [9].

Fig. 3 Structure of the isolines and the sheaf of sight lines in the
SDNPA diagnostic cross-section 2.

4. Test Calculation Results
The method has been tested assuming LHD magnetic

surface geometry and the diagnostic sightlines correspond-
ing to the Silicon Detector-based Neutral Particle Analyzer
[9]. This diagnostic is capable of performing a scan of the
plasma column in six vertical planes shown in Fig. 2. The
vertical scan range, 20 sightline positions and the struc-
ture of the magnetic surfaces in the plane #2 are shown in
Fig. 3.

The isolines need to be a system of nested convex
closed curves without self-intersections. These conditions
are satisfied for this diagnostic plane. The innermost and
the outermost values of the effective radius in this exam-
ple are ρ1 = 0.024 and ρ20 = 0.998. Fig. 4 illustrates the
data required for the integral kernel calculation. The mea-
surable signal along these 20 sight lines has been simulated
by the numerical evaluation of the integral (1) for three test
profile shapes:

1). f (ρ) = A exp(−ρ2
/
σ2),

2). f (ρ) = A(1 − ρ)2,

Fig. 4 Monotonicity intervals along the 20 sightlines in the
SDNPA diagnostic cross-section 2.

Table 1 Residual vector characteristics.

Case # ||rα||2/
√

N |rα|min |rα|max

1 0.070 2.2 × 10−3 0.147
2 0.073 2.4 × 10−4 0.203
3 0.063 3.3 × 10−4 0.121

3). f (ρ) = A(1 − ρ2)2.

The simulated sight line integral data was used as the input
for the reconstruction method. Fig. 5 shows the obtained
reconstructed profiles and the initial predefined source
function curves. Table 1 summarizes the achieved values of
the residual vector rα = f − f ∗ between the vector f of ex-
act source values and the reconstructed vector f ∗. The reg-
ularization parameter α values used in each case are shown
on Fig. 5. The root-mean-square error values ||rα||2/

√
N do

not exceed 10% of the profile maxima in these examples.
Maximum and minimum absolute deviations |rα|max and
|rα|min between the initial and the reconstructed profiles
are also shown in the table. The solution smoothness and
the accuracy of the obtained profile reconstruction depend
on the regularization parameter choice. More sophisticated
techniques exist [5] that enable automatic α adjustment.

5. Summary
A fast simple algorithm for local neutral particle

source function reconstruction has been realized and tested
for LHD geometry. The obtained regularized solutions are
close to the predefined test profiles and the curve smooth-
ness is achieved by choosing an appropriate regularization
parameter. An automatic choice is preferable compared to
the a priori setting approach.

The method described here does not take into account
the angular dependence of the neutral particle source func-
tion. This is often the case due to the anisotropy of the
ion distribution function influenced by neutral beam injec-
tion or ion cyclotron radiofrequency heating. If the angle
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Fig. 5 Regularized solutions of the integral equation (dashed B-
Spline curves) and exact source functions (soild curves)
for three different test profile shapes.

between the diagnostic observation direction and the mag-
netic field varies significantly along the line of sight within
the plasma, the local neutral particle source function recon-
struction may become a much more complicated task. The
angular distribution of suprathermal alpha particles pro-
duced in nuclear fusion reactions is, however, isotropic.

The presented algorithm is suitable not only in par-
ticle diagnostic data analysis, but for any kind of radia-
tion source function reconstruction as well, assuming the
source to be equal on a magnetic surface. The recon-
structed radial dependence provides additional information
for comparisons and cross-checks using the localized ac-
tive diagnostic data.
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