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Two dimensional (2D) phase contrast imaging (PCI) is an excellent method to measure core and edge turbu-
lence with good spatial resolution (∆ρ ∼ 0.1). General analytical consideration is given to the signal interpretation
of the line-integrated signals, with specific application to images from 2D PCI. It is shown that the Fourier com-
ponents of fluctuations having any non-zero component propagating along the line of sight are not detected. The
ramifications of this constraint are discussed, including consideration of the angle between the sight line and
flux surface normal. In the experimental geometry, at the point where the flux surfaces are tangent to the sight
line, it is shown that it may be possible to detect large poloidally extended (though with small radial wavelength)
structures, such as GAMS. The spatial localization technique of this diagnostic is illustrated with experimental
data.
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1. Inroduction
Phase contrast imaging (PCI) is a well established

technique [1, 2] to image density fluctuations, integrated
along a line of sight. The technique enables good wave-
number resolution and the propagation direction and veloc-
ity perpendicular to the line of sight can be analyzed. The
system installed on LHD [2–5] is the first of its type to em-
ploy a 2D imaging principle, rather than conventional 1D
imaging, which gives the additional capability to spatially
resolve fluctuations along the line of sight. Other such sys-
tems employing 1-D imaging are reported in [6, 7].

The purpose of this paper is to present a novel analysis
of the interpretation of line-integrated signals and to under-
stand what these results imply for the detection of radial
and poloidal wave-vector components in flux coordinates.
These results are applicable to any type of fluctuation sig-
nal, not just from PCI.

The phase contrast imaging system employs a CO2

laser at 10.6µm. The scattering angle of plasma fluctua-
tions of mm scale is small. The scattering is in the “Raman-
Nath” regime, sothat the registered image is a line-integral.
The optical system employs a quarter wave groove at the
primary beam focus to convert phase to amplitude. The
size of the phase plate and expanded beam size defines a
lower limit to the measurable k.

For the geometry consider a coordinate axis such that
the z axis is directed along the line of sight (probing laser
beam). Spatial localization along the line of sight can be

author’s e-mail: clive@nifs.ac.jp

obtained by considering the two constraints: (1) That the
toroidal wavelength is considerably larger than perpendic-
ular to B, so that:

k(r) · B(r) = 0 (1)

(where r = (x, �, z) is the position vector and k is wave-
vector conjugate to the spatial coordinate r + δr, where
δr is a small displacement about r; the conceptual mean-
ing of this separation is discussed in Sec. 2), and (2) that
PCI detected signal is insensitive to any components with
kz � 0, because of line-integration effects (discussed in
Sec. 1). From these two facts, the measured feature with
wave-number components (kx, k�) in the 2d image plane
(for which kz = 0) must be perpendicular to the projection
of the associated local magnetic field vector in the image
plane, (Bx, B�), since kxBx+k�B� = 0. In this way, from the
spatial power spectrum of a 2D image of the fluctuations,
S (kx, k�), the wave-number resolved fluctuation profile can
be determined given that the magnetic field direction,

χp(z) = tan−1(B�(z)/Bx(z)), (2)

is a unique function of z. On LHD, a system has been
developed with a 6× 8 2D detector to take advantage of
this technique [3]. The pitch angle variation along the line
of sight is around ∼ 80◦, so good separation of fluctua-
tion components is possible. The system images fluctua-
tions within the diameter of the probing laser beam having
wave-numbers in the range 0.1 < k < 0.6 mm−1, or by
changing the magnification, up to k < 4 mm−1 [2, 5]. The
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Fig. 1 Sight line geometry in different magnetic configurations.

sight line of the system relative to the magnetic surfaces on
LHD, for two typical magnetic configurations is indicated
in Fig. 1 (however the thickness of the probing laser beam,
with 1/e2 diameter ∼ 10 cm, is not represented). The sight-
line penetrates from the edge to the core, depending on the
magnetic axis position of the plasma (Rax), implying that
the entire fluctuation amplitude profile ñ(ρ), 0 < ρ < 1 can
be obtained.

The structure of this paper is organized as follows.
In Sec. 1, we demonstrate the localization principle with
respect to experimental measurements. In Sec. 2, we de-
scribe the general interpretation of line-integrated fluctu-
ation signals. We present a different formalism than what
has been presented before [8,9], though the results are fun-
damentally the same. In Sec. 3, we consider which flux-
coordinate resolved Fourier components (poloidal and/or
radial) appear in the line-integrated signal.

2. Image Processing of 2D PCI Images
The raw image sequence Ñ(x, �, t) is first preprocessed

to generate a correlation image Γ(∆x,∆�, f ), where f is
the temporal frequency and ∆x,∆� is the spatial separation
in the image. An image of such a fluctuation is plotted in
Fig. 2 (a). It is clear that there are structures oriented at both
∼ ±40◦ corresponding to fluctuations from the top and bot-
tom of the sight line. The spatial power spectrum S (kx, k�)
is then computed by applying the Fourier transform, how-
ever, generally, to improve spatial resolution, we use high
resolution techniques such as Maximum Entropy to reduce
the broadening. Finally, by transforming from rectangular

to polar coordinates kp =
√

k2
x + k2

� , χ = tan−1(k�/kx)+π/2,

the fluctuation is localized to ρ according to a known field
line dispersion χp(ρ), as is shown in Fig. 2 (b). The reversal
of the direction of the k peaks near the top and bottom is
a result of the existence of a unique poloidal propagation
direction, in this case being in the electron diamagnetic di-
rection, as explained in Fig. 4 (b). Further consideration of
this is given in Sec. 3.

Fig. 2 (a) Correlation image. (b) Spatial and k distribution of
fluctuation power.

3. Line-Integral of Turbulence Spec-
trum
Define the local density fluctuation ñ(x, �, z) and line

integrated density fluctuation Ñ(x, �) =
∫

L
ñ(x, �, z)dz

where the z axis is along the sight line of the probing beam
denoted by L. We define local and line-integrated corre-
lations as Γ(∆x,∆�,∆z; x; �; z) = 〈(ñ(x, �, z)ñ(x + ∆x, � +
∆�, z+∆z)〉 and Γ(∆x,∆�; x; �) = 〈Ñ(x, �)Ñ(x+∆x, �+∆�).
Angle brackets denote ensemble averaging, either in the
time or frequency domain. Though strictly the time or fre-
quency dependance should be treated formally, this is not
treated here because it does not affect the line integral ef-
fects. Spatial homogeneity transverse to the beam is as-
sumed (since the beam size is small with respect to the
plasma size) so the x and � dependencies can be dropped.
From these definitions, it can be shown [8] that Γ is related
to Γ through:

Γ(∆x,∆�) =
∫

L

∫
L
Γ(∆x,∆�,∆z; z)d∆zdz. (3)

We define the spectral density functions S (kx, k�) as the
2D Fourier transform of the line integrated correlation
function Γ(∆x,∆�), and S (kx, k�, kz; z) as the 3D Fourier
transform of Γ(∆x,∆�,∆z; z) for fixed z. By combining
these definitions with the Fourier transform of Eq. (3) over
∆x,∆�, and substituting the RHS for a single inverse
Fourier transform of S (kx, k�, kz; z) over kz, the following
equation can be written:

S (kx, k�) = (2π)−1
∫ ∞

−∞

∫ ∞

−∞

∫
L

S (kx, k�, kz; z)

× exp(−ikz∆z)dkzd∆zdz. (4)

By swapping the order of integration of d∆z and dkz,
the term

∫ ∞
−∞ exp(−ikz∆z)d∆z is replaced to δ(kz), and the

final result is:

S (kx, k�) = (2π)−1
∫

S (kx, k�, 0; z)dz. (5)

Thus, the line integrated power spectrum is only sensitive
to local fluctuation spectral components with kz = 0. In
other words, all other components cancel out. The above
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equation is dimensionally correct, since S being local
power spectral density has dimensions of m−3 and S has
dimensions of m−2. The above equation is analogous to the
projection slice theorem in Fourier theory/tomography. In
order to make use of the Wiener-Kinchine theorem to relate
the local power spectrum to the local correlation function,
it is necessary to make the quasi-homogeneous approxi-
mation [10], that is Γ(∆x,∆�,∆z; z) = Γ(∆x,∆�,∆z; z′) for
|z′ − z| < L, where L is the correlation length. This is
equivalent to the statement that the scale length for changes
in the fluctuation properties (lturb = (d〈ñ2〉/dz)−1〈ñ2〉) is
larger than the correlation length, i.e. lturb � L.

The maximum desired spatial resolution lturb is there-
fore at least several times L, or equivalently, λ, the fluc-
tuation wavelength. However, as has been shown [5], the
instrumental resolution is linstr ∼ aλ/Bw where Bw is the
least of the width of the image/probing laser beam and a
is the plasma minor radius (however this can be improved
using high resolution spectral analysis, effectively increas-
ing Bw). This is larger than the fluctuation wavelength by a
factor a/Bw ≈ 10 (for overview mode, sensitive to largest
scale fluctuations).

This result in Eq. (5) can be related to the conven-
tional definitions as follows. The rms local density fluc-
tuation is given by 〈ñ2(z)〉 = ∫

S (kx, k�, kz; z)dkxdk�dkz,
and the line integrated density fluctuation has rms given
by 〈Ñ2〉 = ∫

S (kx, k�)dkxdk�. Therefore, combining these
definitions with Eq. (5), it is clear that

〈Ñ2〉 =
∫ 

∫∫
S (kx, k�, 0; z)dkxdk�

〈ñ2(z)〉 〈ñ2(z)〉
 dz, (6)

so that by defining a length scale:

lz(z) =

∫∫
S (kx, k�, 0; z)dkxdk�

〈ñ2(z)〉 , (7)

then the result can be stated in conventional form [8, 9]:

〈Ñ2〉 =
∫
〈ñ2(z)〉lz(z)dz. (8)

In this manner, the selection rule kz = 0 is taken into ac-
count by this parameter lz, simply representing the ratio of
the fluctuation power spectral density with kz = 0 to the
total fluctuation power. We discuss the dependence of lz
further in Sec. 4.

Because of finite correlation length, any correlation
function must have some non-zero amplitude at kz = 0.
For example, a realistic correlation function might have a
functional form Γ(∆z) = exp(−∆z2/L2) exp(ikz0∆z) (where
L is the coherence length and kz0 is the peak wave-number
in the z direction), so that lz = L exp(−L2k2

z0/4)/(2
√
π).

This shows that if L = λ, lz is close to L, however for
longer correlation lengths, lz rapidly becomes smaller (co-
herent structures tend to cancel each other out). From this it
is seen that a wave-packet with non-zero peak kz0 will pro-
duce a line-integrated signal through its finite correlation
length.

Fig. 3 The angle of the line corresponding to the constraint kz =

0, as a function of ρ for different magnetic configurations.

4. Forward Modelling of Signal from
Spectrum in Flux Coordinates
Though we have shown that components with kz � 0

are not detected, we now concentrate on the forward prob-
lem, i.e. modelling of the expected signal from a given
spectrum in flux coordinates. In order to relate the mea-
surements to the fluctuation spectrum expressed in terms
of radial and poloidal components, we define the following
local coordinate system: r = ∇ρ (where ρ is the flux sur-
face coordinate), B (magnetic field vector), and a poloidal
direction vector θ̂ = B̂× r̂. Given B̂ is perpendicular to the
projected fluctuation, we are interested in the projection in
the ẑ direction, as well as in the direction perpendicular to
the field p̂ = B × ẑ. Thus, the coordinate transformation
modifies the wave-vectors via:

(
kz

kp

)
=

(
θ̂z r̂z

θ̂p r̂p

) (
kθ
kr

)
, (9)

where the components of the matrix are computed from
the flux surface geometry, and can be shown to have the
structure of a simple rotation matrix (with unity Jacobian),
since θ̂p = −r̂z and θ̂z = r̂p. Expanding the first row of
Eq. (9), the condition for detection upon line-integration,
kz = 0 implies that the detected fluctuation components lie
on a line in (kr, kθ) space with angle α such that tanα =
−θ̂z/r̂z.

Calculations of the angle α, as a function of ρ (having
mapped z to ρ) for different magnetic axis positions (Rax)
is given in Fig. 3. For the configuration with Rax = 3.6 m,
the sight line passes very close to the core (as in Fig. 1), so
that α should be close to zero for most of the viewing line.
However, as indicated, α ∼ 20◦, because θ̂ has a significant
vertical component, and r̂ has a significant toroidal compo-
nent (since the sight line is slightly semi-tangential with an
angle of ∼ 6◦ to vertical). For Rax = 3.75 m, the angle α is
larger, being around 45◦ at the edge of the plasma.

For the sake of example, we prescribe the local spec-
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trum of turbulence in flux coordinates, S flx(kr, kθ; z), whose
(kr, kθ) dependence is plotted in Fig. 4 (a). The distribu-
tion along z is assumed to be centred at z0 with width
as narrow as lturb (several correlation lengths), so that it
projects with a unique angle χp(z0) into the (kx, k�) plane.
For this example, we have considered fluctuations propa-
gating in the electron diamagnetic poloidal direction, and
both inwards and outwards in the radial direction, with
some radial asymmetry, in order to show the effect this
can have on the detected signal. The spectral density func-
tion is transformed from flux coordinates to beam aligned
coordinates (along and perpendicular to it) via the 1:1
transform S p(kp, kz; z) = S flx(kr, kθ; z). This transforma-
tion is depicted in Fig. 4 (a) as a rotation of the coordinate
axis (kr, kθ) → (kp, kz) through angle α. We consider the
transformed signal for two possible values of α. The slice
S p(kp, 0), which contributes to the line-integral signal, is
plotted for each value of α in Fig. 4 (b). Since only com-
ponents along the line kr/kθ = tanα (such that kz = 0)
can contribute to the line-integral, the contribution to 〈Ñ2〉
will generally depend strongly on α (determined only by
the position z along the sight line and flux surface geome-
try), even for constant local 〈ñ2〉 because S flx is anisotropic.
This is equivalent to there being a dependence lz(α).

It is clear that α is asymmetric with respect to fluctu-
ation components measured on the top and on the bottom.
This implies that any asymmetry in kr of S flx(kr, kθ; z) may
result in a different line integrated fluctuation profile on
the top (for z = zt corresponding to ρ = ρ0), compared
with the bottom (with z = zb, having the same ρ = ρ0),
even if S flx(kr, kθ; zt) = S flx(kr, kθ; zb), i.e. fluctuation prop-
erties are constant on a flux surface. This is illustrated by
comparing the fluctuation profiles S p(kp, 0; zt) (for which
α = 30◦) and S p(kp, 0; zb) (for which α = −30◦) in Fig. 4
(b). The radially asymmetric spectrum produces an appar-
ent up/down asymmetry in the deduced local fluctuation in-
tensities. It is possible that the radial asymmetry may also
relate to the radial flux. Such kinds of asymmetric fluctua-
tion amplitude profiles are regularly observed in the mea-
surements [5, 11] (and see Fig. 2).

Finally, the spectrum can be transformed from
S p(kp, 0; z) to cartesian coordinates S (kx, k�, 0; z) by the re-
lations kx = kp cosχp(z), k� = kp sin χp(z), and based on
Eq. (5), the line-integrated spectrum in the image plane can
thus be related to S p through:

S [−kp sinχp(z), kp cosχp(z)] = S p(kp, 0; z)
dz

dχp(z)
.

(10)

For the above analysis, we shall give a short men-
tion about the role of Doppler shifting by poloidal
flows. The frequency dependent flux surface function
S flx(kr, kθ, ω; z) would be transformed by a poloidal rota-
tion vθ to S flx(kr, kθ, ω + vθkθ; z). Considering that the fre-
quency of turbulence in the plasma frame is normally con-
siderably less than the Doppler shift [11], lower frequency

Fig. 4 (a) Example spectrum in (kr , kθ) space, together with the
axis projections for α = ±30◦. (b) Projected spectrum
along the line of sight such that kz = 0, for the same
values of α as indicated in (a).

components will intrinsically contain only radial compo-
nents (with small kθ), while the higher frequency compo-
nents will have some poloidal contribution. Therefore, the
frequency of components towards the core of the plasma,
where α ∼ 90◦, should be low, while components at the
edge should have a high peak frequency.

When the sightline is tangent to the flux surface
(α = 90◦), the system is sensitive to fluctuations with
kθ = 0. However, in this small k limit, the transforma-
tion of S flx(kr, kθ; z) → S p(kp, kz; z) breaks down because
the curvature radius of the flux surface is comparable with
the poloidal wavelength; in this case the correlation func-
tion would have to be projected to determine line integra-
tion effect, Γflx(∆ρ,∆θ; z) → Γp(∆p,∆z; z) . However, it is
clear that the signal should be sensitive to components with
small kθ. This includes features such as GAMS and low m
MHD modes. Though such detectable fluctuations would
have kθ � 0, the k transfer function of the PCI system only
admits components with kp = kr � 1 cm−1, implying that
the detected fluctuations at this point must have fine ra-
dial structure. This is compatible with the characteristics
of GAMS (long poloidal wavelength, short radial wave-
length). The same conclusion about the detection of zonal
flows with PCI was also stated in [12]. Though zonal flows
may produce no net density fluctuation (completely in the
potential field), the associated GAM may have a density
fluctuation component; one experimental study has shown
that for the GAM, ñ/n ∼ 0.1φ̃/φ (where φ is the plasma
potential) [13].
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5. Discussion
We have shown that a line-integrated signal is sen-

sitive only to the Fourier component of fluctuations with
kz = 0. By defining a length scale in Eq. (7), the rms
line-integrated fluctuation can be related to the rms of
the local fluctuation. If the spectrum in flux coordinates,
S flx(kr, kθ; z) were isotropic perpendicular to the field lines,
then 〈ñ2〉 could be reconstructed unambiguously from Abel
inversion of the measured S p(kp, 0; z). However, in gen-
eral, no such assumption can be made. For example, mea-
surements from beam emission spectroscopy in DIII-D of
the local power spectrum shows a non-zero poloidal peak
wave-number, and a zero peak radial wave-number [14].
Therefore we must accept that line-integral signals can-
not fundamentally deliver the local fluctuation power with-
out some assumptions or further information, for exam-
ple, probing the same volume from a different direction, or
probing the same flux surface at different points with dif-
ferent angle α. This is achieved with 2D PCI for 2 points,
since α(−ρ) ≈ −α(ρ), as shown in Fig. 3. However, 2 val-
ues of α for every ρ may not be enough to calculate 〈ñ2〉
accurately. For practical use, we can generally make the
assumption that lz ∼ λ/4, where λ is peak the wavelength.
This relation was shown to hold on the TCA Tokamak [8]
for homogeneous turbulence as lz and λ increase with tem-
poral frequency. Further consideration of these issues is the
topic of future work.
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