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Ionospheric Tomography by Neural Network Collocation Method
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We describe a neural network collocation method (NNCM) for tomographic image reconstruction with small
amount of projection data, which has been successfully applied to the three-dimensional ionospheric tomography
based on the dataset of signal delays from the GPS satellites. In NNCM the neural network is trained by mini-
mizing an object function composed of squared residuals of the governing equations evaluated at the collocation
points and some constraining conditions imposed usually by observation data. This method is applied not only to
the computerized tomography but also to the analyses ofvarious inverse problems such as the data assimilation,
the parameter estimation, the time series prediction, and so on.
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1. Introduction
In this paper we describe that the “neural network

with residual minimization training (NNRMT)” [1] used
for the neural network collocation method (NNCM) can
be applied to the tomographic image reconstruction with
small amount of projection data [2]. As a typical example
of such a problem it has been successfully applied to the
three-dimensional computerized ionospheric tomography
(CIT) [3].

1.1 Computerized ionospheric tomography
Reconstruction of ionospheric electron density profile

based on measurements of radio signals from navigation
satellites has become an important technique for various
applications ranging fromacademic to practical purposes.
As the ionospheric total electron content (TEC) is an in-
tegrated value of the ionospheric electron density along a
ray path of the radio signal from a satellite to a ground
receiver, the problem to reconstruct the electron density
profile from a set of the TEC values is a kind of comput-
erized tomography (CT). Since Austenet al., [4] applied
the algebraic reconstruction technique (ART) to the two-
dimensional analysis of model TEC data generated by a
computer simulation various methods for CIT were pro-
posed and applied to analyses of model data and real obser-
vation data. Though the two-dimensional ionospheric to-
mography has been studied extensively from both the the-
oretical and observational aspects [5–7], in these studies
only the ionospheric structure within a cross-section de-
fined by the satellite orbit and the ground receiver array
can be obtained, which limits strongly the observation time
and place. In order to cope with the problem methods for
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the three-dimensional CIT are being studied intensively by
many authors [8–14]. In these analyses, usually, TEC data
obtained for the ray paths between the Global Positioning
System (GPS) satellites and ground receivers are used and
to attain higher resolution sometimes the occultation mea-
surement by the Low Earth Orbit (LEO) satellite is incor-
porated. The vertical density profiles are often expressed
by function series based on the empirical orthogonal func-
tions (EOF) derived from the international reference iono-
sphere (IRI) model. By using the GPS-ground receiver sys-
tem many ray paths in a three-dimensional domain become
available and the occultation measurement makes up scant
information on the verticaldensity profile. The problems
on the scarcity of the ray paths and the lack of the near-
horizontal ray paths, however, are not solved sufficiently
by these methods. To solve these problems we proposed
a new CT analysis method effective for the case of small
amount of projection data based on NNCM and success-
fully applied it to the three-dimensional CIT by using data
of the GPS Earth Observation Network (GEONET) [15]
and the ionosonde data.

1.2 Neural network with residual minimiza-
tion training

A neural network is composed of many neurons with
simple processing ability. A neuron has some input chan-
nels and one output channel. A weight value is assigned to
each input channel includinga bias channel and weighted
sum of the input data is nonlinearly transformed by an
activation function. We consider a multilayer network in
which neurons are aligned in layers as an input layer, hid-
den layer(s), and an output layer. We skip details of the
multilayer neural network as these are described by many
authors (e.g., [16,17]).
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Usually the multi-layer neural network is trained for a
set of combinations of an input dataset (a “pattern”) and a
known output dataset (a “teacher dataset”) by minimizing
an object function (a sum of squared differences of output
data from the teacher data) with respect to the internal pa-
rameters (weights) of the neural network. The training is
carried out by the commonly used error back-propagation
method [18]. It should be noted that for the sake of expla-
nation of the learning process we have hitherto described
the conventional learning process where teacher data are
necessary but in the case of NNRMT teacher data are not
necessary. In the NNCM method values of the independent
variables (the position of the collocation points) of the out-
put variable (the solution of the problem) are fed and the
weights of the neural network are determined so that the
sum of the squared residuals are minimized. This is a map-
ping from a collocation point to the functional value under
the condition that the governing equation is satisfied by the
solution.

For our purpose the following features of the multi-
layer neural network are very important.

(1) It can approximate any functions within any preci-
sion under a certain mathematical condition [19, 20].
Though this existence theorem does not guarantee
that the solution could be attainable, an approximate
solution is often attainablecomparatively easily prob-
ably because the multi-layer neural network repre-
sents a function expansion by “variable basis func-
tions” instead of “fixed basis functions” such as the
system of orthogonal functions (as the trigonometric
functions).

(2) Generalization property is controlled by selecting the
network structureand iteration number appropriately,
and the method is robust against noises in input data.
These are empirically believed though reliable gen-
eral recipes for obtaining a result with the minimum
approximation error have not been found despite of
extensive theoretical works. Asthe interpolation and
smoothing functions are inherently included in the
multi-layer neural network [21] the difficulty in CT
that arises from an imperfect set of projection data is
relaxed considerably by using the neural network.

(3) Wide range of complex nonlinear problems can be
solved by selecting theobject function appropriately
because the learning process is anonlinear optimiza-
tion of an object function composed of the above de-
scribed flexible “approximate functions”, their deriva-
tives, and integrals.

2. Computerized Tomography by Neural
Network Collocation Method
We assume to injecta beam represented by a quan-

tity (beam quantity)qp(�)
∣∣∣
�=0

into the object along the p-th
projection path where� is the coordinate along the path and
the quantity is measured after the beam goes out from the

object at� = L. Thechange of the beam quantitydqp(�) is
assumed to depends on the local value of the beam quantity
and the target quantity distribution (ρ(r)) as

dqp = f
(
ρ(r), qp

)
d�. (1)

When weare to reconstruct the electron density distribu-
tion N(r) in a plasmaby measuring the phase delayφp of
the injected electromagnetic wave the above beam quan-
tity qp is the phase delayφp and the target quantityρ(r) is
the electron density distributionN(r). In this case the inte-
grand of the above integral does not depend on the phase
delayφp but depends on the electron densityN(r) linearly,
and the following equation is derived.

∆φp ≡ φp(L) − φp(0) = A
∫ �=L(p)

�=0
N(r)d�, (2)

where A is a constant and (p) denotes thep-th integra-
tion path. In this analysis weuse a neural network sys-
tem shown in Fig. 1, where a neural network represents the
electron density distribution as a function of the spatial po-
sition. If the coordinate values of a spatial position are fed
to the input channel the electron density at the given posi-
tion is obtained from the output channel. Therefore, if we
prepare numerical integration points (collocation points:
u = 1,. . . U) on the p-th projection path (x(p)

u = ru) be-
forehand the electron densities at the integration points
(�(u)

p = N(x(p)
u )) are calculated and the corresponding phase

delay for the p-th projection path∆φNN
p is obtained. The

object function is, therefore, defined as

E =
1
2

P∑
p=1

(
∆φNN

p − ∆φmeas
p

)2
, (3)

∆φNN
p = A

U∑
u=1

αuN(ru) ≈ A
∫ L,(p)

0
N(r)d�, (4)

where∆φmeas
p , αu, andU are the measured phase delay on

the p-th path, the weight for theu-th integration point, and
the totalnumber of the sampling points for the numerical
integration. For the aboveobject function the increment
of the weight in the updating process of the error back-
propagation method is derived as

∆w(τ) = −ηA
(
∆φNN

p − ∆φmeas
p

) U∑
u=1

αu
∂N(ru)
∂w

∣∣∣∣∣
w(τ)

+β∆w(τ−1), (5)

where w represents a value of a weight (one of the
weights),η andβ are the learning and inertial coefficients,
τ is the iteration number. It should be noted that the
weights are updated every time of a single line integral
calculation, i.e., weights are updated everyT times ofmap-
ping calculations (the “quasi-online updating scheme”).

S1015-2



Plasma and Fusion Research: Regular Articles Volume 2, S1015 (2007)

Fig. 1 Schematic diagram of CIT by NNCM.

3. CT Image Reconstruction for Small
Amount of Model Projection Data
To demonstrate the two-dimensional image recon-

struction by NNCM we prepare a set of line integrals
for the double peak Gaussian distribution as a model of
the numericalexperiment. First we employed parallel-
beam configuration with 30 directions with 30 beams each
(30×30=900) and solved it by the NNCM system of
Fig. 1. It should be noted that “NB”s in Fig. 1 represent
neurons for the instrumental biases in CIT and are not used
in the model data analysis of this section.

Though usually an activation function is not used in
the output layer neurons, in our CT analysis method the
following ”skimmer-type” activation function is used for
stableconvergence during the training process.

σ(x) = x + log(1+ e−x), (6)

The functional error of the reconstructed imageEf is
defined as

E f =

√∑
N (zor� − zrec)2

Mzmax
, (7)

wherezorg, zrec, zmax, and M denote theoriginal, recon-
structed images, the maximum value of the original image,
and the total number of evaluation points, respectively.

The reconstructed image is shown in Fig. 2 with the
result bythe conventionally used filtered back projection
(FBP) method in Fig. 3. The FBP method works very well
if it is applied to a problem with a large amount of projec-
tion data, but it gives a very poor result when it is applied
to a problem with small amount of data as in this case. The
errors of the reconstructed images by the NNCM and the
FBP areE f = 0.0219 andE f = 0.143, respectively. It was
also confirmed that the new method gave a rather good re-
sult even for an extremely small amount of projection paths
as 3× 10= 30 whereE f = 0.034.

Fig. 2 (Left) Reconstructed
double peak Gaus-
sian distribution by the
neural network method
(30× 30 parallel beams),
Ef = 0.0219. (a) Bird-
eye view, (b) Contour
diagram, (c) Recons-
tructed vs. True value.

Fig. 3 (Right) Reconstructed
double peak Gaussian
distribution by FBP
method (30× 30 paral-
lel beams)Ef = 0.143.

4. CT Image Reconstruction of Iono-
spheric Electron Density Distribu-
tion by NNCM

In this section, first, we describe some issues on the
CT image reconstruction by NNCM specific to the iono-
spheric electron density distribution,then numerical exper-
iments for the data of the modelionosphere, and lastly the
CT image reconstruction of the real observation data.

4.1 Some issues specific to the CT of the
ionospheric electron density distribution

We skipthe technical details how to calculate the slant
TEC values from the GPS observations. They are obtained
from the group delays and the carrier phase advances of
two radio signals from a GPS with different frequencies.
The slant TECI j

i (t) at time t along the projection path be-
tween the GPSj and the ground receiveri is the integrated
value of theionospheric and the plasmaspheric electron
density which includes the instrumental biases of the trans-
mitter in the satelliteB j and the ground receiverBi as

I j
i (t) =

r j∫
ri

N(r, t)d� + Bi + Bj

(i = 1, . . . I; j = 1, . . . J),

(8)
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Fig. 4 Schematic diagram of the two-dimensional cross-section
of the computational domain of CIT.

whereN(r, t) is the electron density at the observation time
t and the spatial positionr, andI andJ are the total num-
bers of the ground receivers and the GPS positions, re-
spectively. The computational domain of the above inte-
gral equations ofN(r, t) is divided into two regions, i.e.,
the ionospheric region (lower region, 100 km∼700 km in
altitude) and the plasmaspheric region (upper region, over
700km in altitude), and the ionospheric region is our target
for the CT image reconstruction (Fig. 4). The GPS orbits
are located at 20,200 km in altitude.

When a sufficient number of the observation data for
the slant TEC are available wecan derive the ionospheric
electron densityN(r, t), and instrumental biasesBi andB j

(“NB”) by solving the integral equation (Eq. (8)). The
equation is descretized and the object function to be mini-
mized is obtained as

E1 =
∑
i, j

 U∑
u=1

αuN(ru, t) + Bi + B j + P j
i − I j

i (t)


2

,

(9)

whereu denotes the sampling point for the integration path
within the ionosphere andP j

i is the contribution of the plas-

maspheric electron density to the slant TECI j
i (t).

As described previously the most significant issue
in CIT by using the GPS signals is that high resolution
in the vertical direction is difficult to attain because of
scarcity of horizontal or near-horizontal projection paths.
To cope with this problem and improve the vertical res-
olution we use the information on the peak electron den-
sity Niono

s (riono
s ) ≡ NmF2 and the corresponding height

hmF2 obtained by the ionosonde measurement at the s-
th ionosonde observation stationriono

s . For this purpose we
employed the following penalized object function as

E = �E1 + E2, (10)

E2 =

S∑
s=1

(
Ns(riono

s ) − Niono
s (riono

s )
)2
, (11)

where S denotes the total number of the ionosonde sta-
tions, “iono” denotes the measured value by the ionosonde,
and� is the penalty coefficient. In our analysis we used
ionosonde data of only one station out of 4 ionosonde sta-
tions.

Though it is not necessary to discretize the compu-
tational domain as the mapping function realized by the
multi-layer neural network is continuous, continuous treat-
ment of the input space causes overfitting and makes the
system unstable because of the finite number of the con-
straints (number of projection paths). To avoid these de-
fects, input space discretization is extremely effective. In
the actual CIT, therefore, we discretize the temporal and
spatial domain into finite-sized meshes. We set that the
temporal resolution of the electron density distribution as
∆/2 = 7.5 min and we used the data observed during
(t, t+∆). As for the spatial domain,the discretization is car-
ried out so that more than one projection paths cross each
three-dimensional mesh on average. For this reason we as-
sume that the electron density is constant within an area of
0.5× 0.5 deg (about 50 km×50 km) in latitude/longitude
and 30 km in altitude.

To estimate the contribution of the plasmaspheric re-
gion to the observed TEC value, we employ a simple
diffusive equilibrium model proposed by Angerami and
Thomas [22]. According to this model we assume the
electron density distribution in the plasmaspheren(h) is
decreasing exponentially from the top of the ionospheric
region (h0 = 700 km) with the scale lengthHs up to the
satellite orbits (hsat = 20200 km). Under this assumption
the plasmaspheric contribution to the TEC value of the path
(i, j), P j

i is given as

P j
i =

1
cosθ

∫ hsat

h0

n(h0) exp

(
−h − h0

Hs

)
dh

≈ 1
cosθ

n(h0)Hs, (12)

wherehsat is the altitude of each GPS andθ is the incli-
nation of the projection path with respect to the vertical
direction.

4.2 Numerical experiment on the model data
To examine the performance of NNCM we first ap-

plied it to the model problem in which the electron density
distribution is generated by using the global core plasma
model (GCPM) [23]. GCPM is considered to be the most
comprehensive model presently available including the
ionosphere, plasmasphere, magnetospheric trough and po-
lar cap, where the ionospheric densities are represented by
the international reference ionosphere (IRI) model [24] at
lower altitudes. The actual positions of GPS satellites and
ground receivers during a particular observation (the real
projection path geometry) are used for the model calcu-
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lation, whereas the bias values of the satellites and ground
receivers are assigned artificially. The values ofNmF2 and
hmF2 at the actual ionosonde station located in Japan are
obtained from GCPM and used as the “observed” data. For
the numerical experiment by NNCM we produced model
observation data corresponding to the GCPM data of 1200-
1215 JST, 22 December 2001 for 40 GEONET receivers
located in Japan from Hokkaido to Okinawa. In both the
model experiment and the real data analysis the observa-
tion data from one ionosonde station located at Kokubunji
(139.51 E, 35.74 N) among 4 ionosonde stations in Japan
are employed and the data of 3 other ionosonde stations are
used for validation. Total number of the projection pathsP
of 2128 is used and 20 sampling points for the integration
are placed on each projection path. Taking into account
of the errors of the preliminary calculations and the com-
putational cost we decided to employ a 4-layered neural
network with 3,12,12, 1 neurons in each layer. The cal-
culations were carried out on a workstation with a Xenon
2.20 GHz CPU and it took about 10 min of CPU time to
train the network (4000 iterations).

An example of the reconstructed density contour plot
at the longitude of 137 E is shown in Fig. 5 b with the cor-
responding true contour plot produced from the GCPM
density distribution (Fig. 5 a). The average density error
is 2.8× 1016 m−3 in this calculation, which is very small in
comparison with the typical peak density of 2× 1018 m−3.
The bias values of the transmitters and the ground receivers
were determined very accurately as 0.12 and 0.31 TECU (1
TECU= 1× 1016 m−2).

4.3 Reconstruction of real electron density
distribution

From the GPS dataobtained by 40 different receivers
over the Japanese archipelago and the ionosonde data ob-
served at Kokubunji the actual three-dimensional iono-
spheric electron density distribution of November 5, 2001
has been reconstructed. The observation data obtained
within 15 min every hour are analysed to investigate the
hourly variations of the ionospheric electron density dis-
tribution from 0000 to 2400 JST. To confirm that the suf-
ficiently high vertical resolution is attained by NNCM the
peak density valuesNmF2 and the peak density heights
hmF2 at the ionosonde stations, Wakkanai, Yamagawa,
and Okinawa in addition to Kokubunji whose data were
used for training are plotted over 24 hr on Novemver 5,
2001 and compared with the observed data (Figs. 6 and 7).
Agreement between the reconstructed values and the ob-
served values are very good (the root mean square error
of the peak density at the ionosonde sites is∼7 %), from
which it can beconcluded that the reconstructed density
distribution agrees with the true density distribution even
at points apart from the ionosonde station used for train-
ing.

Fig. 5 Contour plot of the model (a) and reconstructed (b) den-
sity distributions at longitude 137 E. The unit of density
is 1011 m−3.

5. Conclusion
We have successfully applied NNCM based on

NNRMT to reconstruct a local ionospheric electron den-
sity distribution from the model data and the real observa-
tion data. In order to improve the vertical resolution we
used the penalized object function for the neural network
training where the ionosonde data are taken into account.
It is quite effective because the vertical density profile can
be recovered well by constraining the solution at only one
point in the three dimensional domain. It is also very ad-
vantageous that this CIT is carried out by using only the
ground based observation data. For stability of conver-
gence of the training process we discretized the input space
to the neural network, which is considered to be concerned
with avoidance of the overfitting. It is conjectured that in
the CT image reconstruction with small amount of nonuni-
formly distributed projection paths NNCM gives better re-
sult in comparison with previous ones because the neural
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Fig. 6 Comparison of the ionosonde observedNmF2 (solid line)
and the corresponding values reconstructed by NNCM
(broken line) at timet = 0, 4, 8 12, 16, 20.

Fig. 7 Comparison of the ionosonde-observedhmF2 (solid line)
and the corresponding values obtained by NNCM (bro-
kenline). Theunit of hmF2 is the kilometer.

network is a function approximation with variable basis
function though usually CIT is carried out based on the
“fixed” orthogonal basis functions or EOF. Comparison of
our results on the real observation data with those by other
methods is rather difficult because observation datasets are
not the same, i.e., conditions of the ionosphere, positions
of the satellites and the ground receivers are all different
and, moreover, detailed quantitative data are not published
usually, but our result is presumed among best values ob-
tained by other three dimensional CITs from the viewpoint
of the reconstruction errors of theNmF2 data [13,14], and
the results of the model data analysis show that the error is
limited almost by the spatial grid size.

NNRMT is applicable to widerange of problems other
than the tomographic image reconstruction described in
this paper [25–30]. In this method various excellent fea-
tures of the neural network are utilized and even numerical

formulation of rather complicated problem can be carried
out comparatively easily.
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