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Electromagnetic Instabilities in Fast Ignition
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We investigate the linear instability of electromagnetic modes caused by the interaction of a relativistic
electron beam with a dense plasma, taking into account the relativistic thermal spread of the beam. To obtain
a linear dispersion relation, the relativistic factor γ of the beam is expanded within the first order of the beam
thermal spread. We show that growth rate becomes large when the relativistic thermal spread of the beam is taken
into account. In addition, we discuss the effects of the relativistic beam thermal spread on growth rate and the
wave number vector that yields the maximum growth.
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The fast-ignition scenario (FIS) involves interaction
between a high-energy electron beam and a dense target
plasma [1]. FIS requires the intense electron beam to prop-
agate into the dense plasma to heat the fuel and to ignite fu-
sion burning. In such a beam-plasma system, microscopic
instability is one of the potential effects that may prevent
energy transport of the beam electrons. Therefore, it is im-
portant to understand this interaction. Over the last few
years, many studies have been conducted on the instability
effects—both electromagnetic and electrostatic—of the in-
teraction, in case of the FIS [2–4]. Electromagnetic insta-
bility is called Weibel instability [5], while electrostatic in-
stability is known as two-stream instability [6]. Some stud-
ies have highlighted the necessity of analyzing the mix-
ing of electromagnetic and electrostatic modes [2,7], while
other studies have shown the effects of nonrelativistic ther-
mal spreads of a beam and background plasma on the
growth rate of the instabilities [3, 4]. This paper is mainly
concerned with the effects of the relativistic thermal spread
of beam electrons on electromagnetic instabilities. Our 3D
PIC simulations [8] show that the thermal spread of the
beam electrons is not small enough to be neglected. We
therefore expand the relativistic factor γ =

√
1 − v2/c2 of

the beam electrons to the first order of the thermal spread,
which is different from that undertaken in previous works.
Here, c and v are the speeds of light and electrons, respec-
tively.

We consider a situation, shown in Fig. 1, where beam
electrons with an average velocity of vbx0 propagate in the
x direction and background plasma electrons propagate in
the direction opposite to the beam drift velocity with −vpx0

to satisfy the current neutrality, nbvbx0 = npvpx0. Here, ni

(i = b or p) is electron density, and the subscripts b and p
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denote the beam and background plasma, respectively. To
emphasize the relativistic effect, we use relativistic veloc-
ity ubx0 instead of vbx0 in the figure. Here, u = γu. Here,
we consider the interaction of the relativistic hot beam with
the nonrelativistic hot background plasma, neglect ion mo-
tion, and restrict ourselves to homogenous, spatially infi-
nite, collisionless plasma.

We study the dynamics of the beam-plasma system
using the relativistic Vlasov equation and Maxwell equa-
tions:

∂ f
∂t
+

u
γ
· ∂ f
∂r
− e

me

(
E +

u
γ
× B

)
· ∂ f
∂u
= 0, (1)

Fig. 1 Geometry of problem. ubx0 is relativistic drift velocity
of beam, and vpx0 is nonrelativistic drift velocity of back-
ground plasma. Wave vector k and electric field E are in
x–y plane, and magnetic field B is along z direction. θ is
angle between k and x axis.
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∇ × B = j + ε0
∂E
∂t
, ∇ × E = −∂B

∂t
, (2)

j(t, r) = −e
∫

u
γ

f (t, r, u)d3u, (3)

where f = f (t, r, u) denotes the velocity distribu-
tion function of the beam and background plasma,
and e, me, and ε0 are electron charge, electron mass,
and vacuum permittivity, respectively. We consider
the electromagnetic perturbations to be of the form
(δEx, δEy, δBz, δ jx, δ jy, δ f ) exp(ikxx+ ikyy− iωt) with elec-
tric field E and wave vector k in the x–y plane, and mag-
netic field B in the z direction, as shown in Fig. 1. It should
be noted that the electric and magnetic field modes are nei-
ther purely electrostatic nor purely electromagnetic. From
Eqs. (1)–(3), we can derive a linear dispersion relation for
the perturbations propagating in every possible direction
from 0 to π/2 in the x–y plane, as
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, (4)

where

εilm ≡ ω
∫

ulΔ f0im

ω − k · u/γd3u, (l,m ≡ x, y), (5)

Δ f0ix ≡ ∂ f0i

∂ux
− ky
ω

(
∂ f0i

∂ux
uy − ∂ f0i

∂uy
ux

)
,

Δ f0iy ≡ ∂ f0i

∂uy
− kx

ω

(
∂ f0i

∂uy
ux − ∂ f0i

∂ux
uy

)
.

(6)

We normalized time to 1/ωp and space to the collisionless
skin depth of c/ωp, whereωp is plasma frequency such that
ω2

p = e2np/(meε0).
We use a simple waterbag velocity distribution func-

tion for the beam and background plasma:

f0i =
ni

4v2i⊥0 · 2vi‖0
[Θ(vy + vi⊥0) − Θ(vy − vi⊥0)]

× [Θ(vz + vi⊥0) − Θ(vz − vi⊥0)]

× [Θ(vx ± vix0 + vi‖0) − Θ(vx ± vix0 − vi‖0)]. (7)

Here, vi‖0 is the thermal velocity spread in the x direc-
tion (parallel spread), vi⊥0 is the thermal velocity spread in
the y and z directions (perpendicular spread), and Θ(x) is a
step function. In Eq. (7), the minus and plus signs signify
the beam and the background plasma, respectively.

By substituting Eq. (7) into Eqs. (5) and (6), we ob-
tain Eq. (8), as shown below. Here, we have expanded
the relativistic factor γ in Eq. (5) to the first order of the
beam thermal spread relative to the beam drift velocity, i.e.,

γ = γ0 + ubx0vb‖/γ0, where γ0 =

√
1 + u2

bx0/c
2, in the ve-

locity integration. Here, vb‖ is x-component of the beam
velocity corresponding to the thermal spread. It should be
noted that the perpendicular velocity spread, vb⊥0, appears

only in the second order in the relativistic factor.
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Here, α = nb/np and β = vbx0/c. If we neglect the ther-
mal spread effect in the relativistic factor in Eq. (5), that is,
if γ = γ0 is substituted, then the term (kxc − ωβ)2 v2b‖0/c

2

in Eq. (8) should be replaced with k2
xv

2
b‖0. By substituting

Eq. (8) into Eq. (4), we can obtain a dispersion relation.
Hereafter, we call the growth rate obtained from Eq. (8)
as the first-order relativistic factor (RF) solution, and the
growth rate used with the constant relativistic factor γ0 in
Eq. (5) as the constant RF solution. For the convenience
of analyzing the instabilities, we use as parameters the di-
mensionless variables

ρb‖,⊥0 =
vb‖,⊥0

vbx0
, ρp‖,⊥0 =

vp‖,⊥0

vbx0
(9)

in addition to α and β.
Figure 2 shows the growth rate of the instability in

k space. Here, we have normalized the wave number
and growth rate as Kx = kxvbx0/ωp, Ky = kyvbx0/ωp and
σ = Im[ω/ωp], respectively. The two figures in Fig. 2 (a)
correspond to a constant RF solution in k space, while two
figures in Fig. 2 (b) are those for a first-order RF solution.
Here, α = 0.05 is used, which is fixed throughout the pa-
per, and the other parameters are described in the figure
caption. Even though these two sets of figures are similar
to each other, it is easy to distinguish them. As Fig. 2 in-
dicates, there exist two instabilities in different k-branches.
One is the instability within a branch with small Kx < 1,
and the other is that with a relatively large Kx. Hereafter,
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Fig. 2 Growth rate in Kx–Ky plane with ubx0/c = 1, ρb‖0 = 0.3,
ρb⊥0 = 0.2, and ρp‖,⊥0 = 0.05. (a) Constant RF solu-
tion. (b) First-order RF solution. Maximum contour lines
are (a) σ = 0.135 and (b) 0.155, decreasing at rates of
(a) 0.016 and (b) 0.025. Maximum growth rates are about
(a) σ = 0.139 and (b) 0.162.

we refer to the former branch as Branch EM and the lat-
ter as Branch ES, as shown in Fig. 2. The branches in k
space separate from each other in the constant RF solution.
However, the two branches in k space are connected to
each other in the first-order RF solution. We can evaluate
the mixing of electromagnetic and electrostatic modes by
calculating |k · E|/(|k||E|) for the electrostatic component
and |k×E|/(|k||E|) for the electromagnetic component. We
find that the Branch EM consists mostly of the electromag-
netic mode, while the Branch ES is mostly electrostatic.
The Branches EM and ES correspond to the Weibel and
two-stream instabilities, respectively. The mode continu-
ously changes from electromagnetic to electrostatic as the
x-component of the wave number Kx increases from 0 to
1. That is, the two modes combine in a certain Kx region
between Kx = 0 and Kx = 1. The growth rate of the two-
stream instability is much larger than that of the Weibel
instability for the parameters used.

The growth rate shown in Fig. 2 (b) is re-plotted in
the |K|–θ plane in Fig. 3, where θ = arctan(Ky/Kx). The
most unstable mode of the two-stream instability propa-
gates obliquely at about 45 degrees with respect to the
beam propagation direction when |K| is about 1.5. On the
other hand, the most unstable mode of the Weibel instabil-
ity occurs in the perpendicular direction when |K| ≈ 0.5.

We now discuss the dependence of the maximum
growth rate on beam velocity and thermal velocity spread.
The maximum growth rate corresponds to the two-stream

Fig. 3 Growth rate in |K|–θ space. Parameters are same as those
in Fig. 2 (b).

Fig. 4 Dependence of instability growth rate on beam velocity,
first-order RF solution (red line), and constant RF solu-
tion (blue line). Parameters are (a) ρb‖0 = 0.3, ρb⊥0 = 0.1;
(b) ρb‖0 = 0.3, ρb⊥0 = 0.2; (c) ρb‖0 = 0.4, ρb⊥0 = 0.2;
(d) vb‖0 = 0.21c, vb⊥0 = 0.07c, and vp‖,⊥0 = 0.035c; and
for (a), (b), and (c), ρp‖,⊥0 = 0.05.

instability; Figure 4 shows its dependence on beam ve-
locity at various thermal velocities. We also compare the
maximum growth rates between the constant (blue) and the
first-order (red) RF solutions. In Figs. 4 (a)–(c), the ratios
of the thermal velocity spread to the beam drift velocity are
fixed, while in Fig. 4 (d), those for the thermal velocity are
fixed. For the fixed thermal spread, as shown in Fig. 4 (d),
the growth rate decreases uniformly to zero as the beam
drift velocity for ubx0/c < 1 decreases. By including rel-
ativistic thermal spread in the relativistic factor, we obtain
larger growth rates compared to the constant RF solutions
in all cases. The difference between the two solutions be-
comes very large for beam drift velocity near ubx0 = c.
The largest growth rate of the first-order RF solution does
not simply decrease as the beam velocity vbx0 decreases, as
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Fig. 5 (a) Dependence of maximum growth rate of electrostatic
(solid line) and electromagnetic (dashed line) instabilities
on beam thermal velocity spread; first-order RF solution
(red), and constant RF solution (blue). Fixed parameters
are ubx0/c = 1, ρb‖0 = 0.3, ρb⊥0 = 0.1, and ρp‖,⊥0 = 0.05.
(b) Dependence of wave number |K| and propagation an-
gle θ on perpendicular thermal spread; ρb⊥0 varies from
0.05 to 0.4 from right to left with increments of 0.05.
Fixed values of ρb‖0 are shown in figure.

shown in Fig. 4 (a) and (c).
Figure 5 (a) shows the dependence of the maximum

growth rates on the beam thermal spread, ρb‖0 and ρb⊥0,
for electrostatic and electromagnetic instabilities. Here,
we fixed beam drift velocity at ubx0/c = 1. The maximum
growth rate of the two-stream instability decreases as the

parallel thermal spread increases. However, the decrease
of the first-order RF solution is very small up to ρb‖0 < 0.4,
compared to that of the constant RF solution. The differ-
ence between the two solutions increases as ρb‖0 increases
up to ρb‖0 < 0.6. The maximum growth rate also decreases
as ρb⊥0 increases up to ρb⊥0 < 0.4. For the electromag-
netic instability, the growth rate does not depend on the
parallel spread, and there is also no difference between the
two solutions. However, its growth rate decreases strongly
as the perpendicular spread increases up to approximately
ρb⊥0 < 0.3, and remains almost constant for large ρb⊥0.

We have also investigated the dependence of the wave
number vector responsible for the maximum growth rate
on the beam thermal spread. The wave number |K| varies
from |K| ≈ 2.5 to 1 and the propagation angle θ varies
from ≈ 70 to 0 degrees as vb⊥0 increases from 0.05 to 0.4,
as shown in Fig. 5 (b). The perpendicular spread strongly
affects the propagation direction of the instability. How-
ever, we observed that the parallel spread does not greatly
affect either |K| or θ.

We have investigated the effects of relativistic beam
thermal spread on electromagnetic instability in the in-
teraction of a relativistic beam with dense plasma. We
showed that, by taking into account relativistic thermal
spread, the maximum growth rates become larger than
those previously attained. We have also investigated the
dependence of the growth rate and wave number vector re-
sponsible for the maximum growth on relativistic thermal
velocity spread, and we found that the growth rate does
not decrease significantly even for a relatively large ther-
mal spread. In addition, it was noted that the propagation
angle of the most unstable mode strongly depends on the
thermal spread.
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