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Effects of Laser Wavelength on Interaction of Ultrashort Intense
Laser with Finite-Scale Length Dense Plasmas
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The energetic electrons and ions generated by the interaction of an intense, ultrashort laser pulse with a finite
scale-length dense plasma were investigated for various laser wavelengths using particle-in-cell simulation. The
hot-electron temperature for the density scale-length L = 2.5 µm is not governed by the Iλ2-scaling laws, where
I is the laser intensity and λ is the laser wavelength. The maximum energy of the energetic ions is not only
proportional to the hot-electron temperature but depends on the electron density.
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Energetic electron and ion beam production from ul-
trashort intense laser-plasma interactions shows promise
for application in radioisotope production for positron
emission tomography [1, 2]. The experiments in this
work employed an infrared subpicosecond laser, e.g., a
Nd:glass laser (λ = 1053 nm) or a Ti:sapphire laser (λ =
800 nm) for two main reasons. The first reason is tech-
nical: it is difficult to produce an ultraintense laser with
other wavelengths. However, KrF laser systems (λ =
248 nm) could produce irradiance intensities of the order
of 1018 W/cm2 [3,4]. The second reason is due to the Iλ2-
scaling laws [5], where I is the laser intensity and λ is the
laser wavelength. The Iλ2-scaling laws indicate an advan-
tage in using long wavelength lasers to generate energetic
particles. In our previous paper [6,7], we stated that the in-
teraction of intense laser pulses with solid-density plasmas
is not governed solely by the Iλ2-scaling laws.

Typically, an ultrashort intense laser pulse has a pre-
pulse or pedestal. Therefore, a controlled or uncontrolled
underdense preplasma forms in front of a solid-density tar-
get before the main pulse arrives at the target surface. The
scale length of the underdense preplasma strongly influ-
ences the energetic electrons produced by the laser-plasma
interaction [8].

In this study, we investigate the interaction of an in-
tense ultrashort laser pulse with finite scale-length dense
plasmas at normal incidence, using one dimensional
particle-in-cell (1D PIC) simulation code [9]. The effects
of various laser wavelengths on laser absorption and ener-
getic electron and ion production are characterized.

In the simulation, the parameters used for the laser
pulse were as follows: a sine-squared envelope with a du-
ration of 400 fs (i.e. the width at half maximum is 200 fs),
irradiated intensity I = 5× 1018 W/cm2, and three different
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wavelengths λ = 0.25, 0.5, and 1 µm. The schematic of the
density profile used in the PIC code is shown in Fig. 1. A
thin target is expressed by an ion density of 1 × 1022 cm−3,
mass number A = 100, and effective charge Z = 10 with a
thickness of 0.3 µm. Preformed plasma sets are positioned
at the front of the laser incidence. The preformed plasma,
where A = 12 and Z = 6, has temperature 1 keV and an ex-
ponentially decreasing density profile n0 exp(−x/L), where
n0 = 2 × 1022 cm−3 is the electron density at the interface
between the thin target and preformed plasma, and L is the
scale length of the preformed plasma. The scale length is
varied from L = 1-2.5µm. Protons are positioned behind
the rear surface to investigate ion acceleration because of a
high-energy electron sheath formed at the rear surface [10].
The protons have a density and thickness of 1 × 1022 cm−3

and 0.1 µm, respectively.
At all laser wavelengths and scale lengths, the laser

pulse interacts with the preformed plasmas at a critical den-
sity, this implies, the pulse does not interact with the solid
target. The interaction point varies with the wavelength,
and the critical density for λ = 0.25 µm is 16 times higher
than that for λ = 1 µm.

Fig. 1 Schematic of the density profile used in the particle-in-
cell code.
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Table 1 Laser absorption fraction as a function of the scale length
L and laser wavelength λ.

scale length laser wavelength (µm)
(µm) 0.25 0.5 1.0
1.0 7.33% 7.25% 11.5%
1.5 12.2% 9.79% 13.0%
2.0 15.4% 12.4% 13.0%
2.5 21.6% 15.7% 13.2%

Table 1 gives the absorption fraction as a function of
scale length and laser wavelength. For λ = 1 µm, the ab-
sorption fraction is approximately constant while the nor-
malized scale length L/λ increases from 1 to 2.5. For
λ = 0.25 µm, the absorption fraction triples while L/λ in-
creases from 4 to 10. For λ = 0.25µm and L = 2.5 µm,
the absorption fraction is greater than 20%, even at normal
incidence.

Electron-energy distributions after 215 fs, near the
time of the laser-intensity peak, for L = 2.5µm are shown
in Fig. 2. The hot-electron temperatures are 320, 500, and
500 keV, for λ = 0.25, 0.5, and 1 µm, respectively. The
temperature of the hot electrons is estimated using the
equation Th ∼ [(1 + Iλ2

µ/1.4 × 1018)1/2 − 1] × 511 keV [5],
where I is the laser intensity in W/cm2, and λµ is the wave-
length in µm. For λ = 1 µm, the measured temperature
agrees with this estimation. However, for λ = 0.25 and
0.5 µm, the measured temperatures are higher than the esti-
mation. Parametric processes at plasma densities below the
quarter-critical density are involved in the principal mech-
anism instead of the mechanism originated from the pon-
deromotive potential. The number density around 500 keV
for λ = 0.25 and 0.5 µm is about thrice that for λ = 1 µm.

The energy distribution of the rear side proton after
415 fs, coinciding with the end of the laser pulse, for L =
2.5 µm are shown in Fig. 3. The maximum proton energies
are 4.7, 4.5, and 3.4 MeV for λ = 0.25, 0.5, and 1 µm, re-
spectively. These results show the influence of high energy
electron temperature and density on ion acceleration be-
cause of the sheath at the rear surface. The temperature of
the energetic electron for λ = 0.25 µm is no more than two
thirds of that found at other wavelengths, while the den-
sity is about twice that for λ = 0.5 µm, and thrice that for
1 µm. As a result, energetic ions are generated with ener-
gies comparable to the case for λ = 0.5µm, although the
temperature of the high-energy electron is low.

This paper characterizes the effect of the different
laser wavelengths on the temperature and density of ener-
getic electrons created by the laser-plasma interaction us-
ing 1D-PIC simulation code. Multi-dimensional effects,
such as surface deformation [5], are important in experi-
ments. These simulations assume the ideal and collision-
less plasma. In addition, electron transport in a solid-
density target is affected by resistivity, which depends on
the material used in experiments. Relatively low-energy
electrons may be more strongly influenced by ambient

Fig. 2 Electron energy distribution at t = 215 fs. The red, blue,
and yellow lines represent λ = 0.25, 0.5, and 1 µm, re-
spectively.

Fig. 3 Energy distribution of rear side proton at t = 415 fs. The
red, blue, and yellow lines represent λ = 0.25, 0.5, and
1µm, respectively.
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