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Axisymmetric magneto-rotational instability (MRI) is studied in comparison with interchange instability
(IntI) in a rotating cylindrical plasma. MRI is driven by the shear of plasma rotation, and the IntI by the density
gradient with effective gravity due to the plasma rotation. The eigenmode equation for the MRI has the same
form as that for the IntI. The local stability criterion is also summarized in a similar statement as “the spatial
gradient of centrifugal force greater than the square of Aflvén frequency causes instability.” However, the MRI
is essentially different from the IntI because of the non-Hermitian property. The Keplerian rotation generates
irregular singularity at the center of the disk, which yields a continuum of eigenvalues with non-orthogonal and
square-integrable eigenfunctions.
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1. Introduction
Flowing plasmas have attracted much attention in fu-

sion plasma research as well as in astrophysics research.
Especially in fusion plasma research, the plasma flow is
attractive from the view point of physics as well as engi-
neering. For example, it has been shown that a sheared
plasma rotation (flow) stabilizes ballooning modes [1,2] in
fusion-oriented tokamak plasmas [3–6]. This fact itself is
already attractive from the engineering point of view for
designing a fusion reactor; if we utilize a plasma rotation,
we may be able to achieve a higher beta value (the ratio
of the plasma pressure to the magnetic pressure), which is
desirable to build an efficient reactor. The physical mecha-
nism of the stabilization has been explained as follows: the
shear of the plasma rotation generates a new path for the
energy transfer from an unstable ballooning mode to stable
(continuum) modes [6]. This may be interesting from the
physics point of view. The energy transfer was found by
utilizing a complete set of basis functions which was ob-
tained by regularizing the singular eigenfunctions belong-
ing to the continuous spectrum. This regularization was
accomplished by changing an eigenvalue problem yield-
ing a continuous spectrum into a similar eigenvalue prob-
lem with a devised weight function which changes the con-
tinuum into discrete spectra and yields the same marginal
stability and almost the same unstable eigenmodes as the
original [7]. This shows that advanced techniques of math-
ematical physics are necessary to elucidate such interesting
phenomena.
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Another example is the stability analysis of resistive-
wall modes [8–11] which takes account of plasma rotation.
The plasma rotation stabilizes the resistive-wall modes
[9–11], which itself is attractive from the engineering point
of view. The mechanism of the stabilization was explained
as the coupling to the sound wave resonance [9,10], which
may be interesting from the physics point of view. This
topic may also require advanced techniques of mathemat-
ical physics. The speed of plasma rotation in tokamaks is
generally much lower than the Alfvén and sound speeds.
Thus, the plasma rotation can be neglected in almost the
entire region except for a thin layer around a rational or a
resonant surface. Then the asymptotic matching technique
can be applied.

A variety of interesting phenomena related to plasma
flows other than listed above, such as drift wave turbulence
and zonal flow [12], Kelvin-Helmholtz instability [13, 14]
and others have been studied.

In astrophysics research, we also commonly find
plasma flows such as accretion disks, jets, solar winds,
etc. [15]. In the present paper, we concentrate on the accre-
tion disk [16], which has a large-scale plasma flow around
a massive central object such as a black hole. The ac-
cretion disk is an axisymmetric system, which means that
the angular momentum of the plasma is conserved and the
plasma cannot fall onto the massive central object. How-
ever, the observation shows rapid accretion, which cannot
be explained by transport due to collisions and the turbu-
lence of neutral fluids [16]. One of the most likely candi-
dates to generate such an anomalous transport is turbulence
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due to the magneto-rotational instability (MRI) [17–19].
The MRI is driven by sheared plasma rotation, and can oc-
cur only in the presence of a magnetic field. Thus, it is usu-
ally studied by the magnetohydrodynamics (MHD) model,
which is also frequently used for studying instabilities in
fusion plasma research. We may expect some relationship
between the MRI and instabilities known in fusion plasma
research [20].

The focus of the present paper is therefore on study-
ing the MRI and the instabilities in the fusion plasma on
a common basis, as well as to discuss the similarities and
differences: the keywords are the Alfvén wave and plasma
flow. We chose the interchange instability (IntI) as an ex-
ample of the instabilities in fusion plasmas. The IntI is
driven by the density gradient with effective gravity due
to plasma rotation. Below, the similarities and differences
between the MRI and IntI will be shown.

This paper is organized as follows. In Sec. 2, the gov-
erning equations for the MRI and IntI are introduced. By
applying the eigenmode approach to the governing equa-
tions, we will obtain the eigenvalue equation and the local
stability criterion in Sec. 3. The local stability criteria for
the MRI and IntI will be summarized in a single criterion.
Section 4 shows the difference between the MRI and IntI
by looking at the evolution equation for them. The IntI is
governed by a Hermitian operator whereas the MRI is gov-
erned by a non-Hermitian operator. In Sec. 5, we will find
the existence of an irregular singularity in the eigenmode
equation in the case of the Keplerian rotation. This irreg-
ular singularity yields a continuum of eigenvalues. Con-
cluding remarks are given in Sec. 6.

2. Governing Equations
Let us start with the simplest equilibrium in which

magneto-rotational instability (MRI) and interchange in-
stability (IntI) can occur. We assume a mass density ρ =
ρ(R), a constant pressure p, a constant magnetic field in
the Z direction B = BẐ with B = const., and a plasma ro-
tation u = RΩ(R)θ̂ with an angular frequency Ω(R). The
gravity of the massive central object is −ρgR̂ in the R di-
rection. The cylindrical coordinate (R, θ, Z) is used (see
Fig. 1), and R̂, θ̂, Ẑ denote unit vectors in the R, θ, Z di-
rections, respectively. There is no electromagnetic force in
the equilibrium.

The perturbation of the mass density ρ1, the pressure
p1, the velocity u1 and the magnetic field B1 is assumed to
be axisymmetric and incompressible as the simplest case,
and the Z dependence of the perturbation is assumed to be
ei kZ as

ρ1 = ρ̃(R)ei kZ , (1)

p1 = p̃(R)ei kZ , (2)

u1 = ∇[φ(R)ei kZ] × ∇θ + ṽθ(R)ei kZ θ̂, (3)

B1 = ∇[ψ(R)ei kZ] × ∇θ + B̃θ(R)ei kZ θ̂. (4)

By using the Boussinesq approximation [13], equations are

Fig. 1 The simplest equilibrium geometry in which MRI and
IntI can occur.

written as

∂ρ̃

∂t
= i k

ρ′(R)
R

φ, (5)

∂

∂t
∆∗φ = i k

[
−2RΩṽθ +

B
ρ
∆∗ψ − R(RΩ2 + g)

ρ
ρ̃

]
,

(6)

∂ṽθ
∂t
= i k

[
(2Ω + RΩ′(R))φ +

B
ρ

RB̃θ

]
, (7)

∂ψ

∂t
= i kBφ, (8)

∂B̃θ
∂t
= i k

(
Bṽθ − Ω′(R)ψ

)
, (9)

where the prime denotes the derivative with respect to R,
and ∆∗ is defined as

∆∗ := R
∂

∂R

(
1
R
∂

∂R

)
− k2. (10)

The variables in these equations are normalized by their
typical values such as the system size R0, the magnetic field
B0, the mass density ρ0, and the Alfvén time τA = R0/vA

with vA = B0/
√
µ0ρ0. The pressure is normalized by the

magnetic pressure. The “system size” will be discussed
further when the Keplerian rotation is introduced in Sec. 5.

The vorticity equation (6) is used instead of the equa-
tion of motion. The Boussinesq approximation has been
applied as mentioned above, and the density perturbation
is included only through the gravity term including the
centrifugal force term. The gravity term makes coupling
between the vorticity equation and the equation of con-
tinuity. The shear Alfvén wave is described by the vor-
ticity equation (6) with only its second term on the r.h.s.
and the induction equation (8), or by Eqs. (7) and (9) with
Ω = Ω′ = 0. The MRI is described by Eqs. (6) with ρ̃ = 0,
(7), (8) and (9). The MRI cannot exist without the Alfvén
wave, or B = 0. On the other hand, the IntI is described
by the equation of continuity (5) and the vorticity equa-
tion (6) with only the third term on the r.h.s. The IntI can
exist without the Alfvén wave, which is naturally under-
stood since IntI can be unstable in neutral fluids. It is noted
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that the IntI in the present study is different from the IntI
which we normally take into account in magnetically con-
fined fusion plasmas. In a magnetically confined fusion
plasma, IntI with k = 0 is most unstable, and thus we nor-
maly assume k = 0. However, here we consider k � 0,
or there is no rational surface, in order to compare with
MRI which does not exist for k = 0. It is also noted that
the IntI in the present study is axisymmetric and does not
have a mode number in θ. The spatial structure of the per-
turbation is similar to the so-called sausage instability in
a Z pinch [20], although the equilibrium magnetic field is
purely in the Z direction in our study, not in the θ direction.

If we assume the time dependence of the perturbation
as e−iωt, the coupled equations (5) - (9) can be reduced to
a single equation as

R
d

dR

(
1
R

dφ
dR

)
− k2

×
1− 2Ω(2Ω+RΩ′)D+4Ω2ω2

A

D2
+

Geff

D

φ=0, (11)

where

D(ω) := ω2 − ω2
A, (12)

ω2
A := k2v2

A := k2 B2

ρ
, (13)

Geff := −ρ
′(RΩ2 + g)

ρ
. (14)

The first term in the square braces of Eq. (11) corresponds
to the Alfvén wave, the second to the MRI, and the third
to the IntI. If we assume Ω � 0 and Ω′ � 0, which
can only be appropriate locally, the second term in the
square braces of Eq. (11) becomes −2 RΩΩ′/D. If we de-
fine Geff := −R(Ω2)′, this is exactly the same form as the
third term for IntI.

The boundary conditions for the MRI may be contro-
versial. Here we adopt φ = 0 at R = 0 and at a finite radius
of R = Ra. The radius Ra should be large enough, although
the MHD model becomes invalid if Ra is too large. For the
IntI, on the other hand, we have a finite plasma boundary
at R = Ra, and φ = 0 at R = Ra for fixed boundary modes.

3. Local Stability Criterion
In this section, the local stability criterion is derived.

Let us consider IntI first. If we approximate R d
dR

(
1
R

dφ
dR

)
by

d2φ
dR2 , which could be appropriate for large R, the eigenmode
equation (11) becomes

∂2φ

∂R2
− k2

[
1 +

Geff

D

]
φ = 0 (15)

for the IntI. This equation has oscillatory solutions if

1 +
Geff

D
< 0, (16)

and the solutions satisfy the boundary conditions. Then,
we obtain a condition for instability as

Geff > ω
2
A. (17)

This criterion means that large enough effective gravity to
bend the magnetic field causes instability.

Next, the eigenmode equation for the MRI can be sim-
ilarly written as

d2φ

dR2
− k2

1 − 2Ω(2Ω + RΩ′)D + 4Ω2ω2
A

D2

 φ = 0.

(18)

The condition for this equation to have oscillatory solu-
tions is

1 − 2Ω(2Ω + RΩ′)D + 4Ω2ω2
A

D2
< 0, (19)

which is 4th order in ω. This inequality can be reduced as

−R(Ω2)′ > ω2
A. (20)

This means that a large enough rotation shear to bend the
magnetic field causes instability. This is exactly the same
form as the criterion for the IntI (17).

These local stability criteria for MRI and IntI can be
summarized as follows:

R
d(ρΩ2)

dR
> ρω2

A for instability. (21)

The l.h.s. of this inequality is the spatial gradient of the
centrifugal force. Therefore, the MRI which is driven by
the shear of plasma rotation and the IntI which is driven by
the density gradient can be understood as similar instabili-
ties.

4. Non-Hermitian Property of MRI
In the previous sections, the governing equations were

described by using the mass density, vorticity, pressure and
magnetic field since it may be convenient to see which term
corresponds to which wave or instability. In the following,
we will use a displacement vector ξ in order to combine
those equations into a single equation. By using the dis-
placement vector ξ, the incompressible version of the lin-
earized MHD equations can be written as [21]

ρ
∂2ξ

∂t2
+ 2ρu · ∇∂ξ

∂t
= [(∇ × B1) × B + (∇ × B) × B1]

−∇p1+ξ · ∇(ρu · ∇u)−ρu · ∇(u · ∇ξ), (22)

∇ · ξ = 0, (23)

where the perturbed magnetic field B1 is defined as

B1 := ∇ × (ξ × B). (24)

It should be noted that the condition (23) does not neces-
sarily mean incompressibility ∇ · u = 0. In the formulation
of Eq. (22), the perturbed velocity field is defined as [21]

u1 :=
∂ξ

∂t
+ u · ∇ξ − ξ · ∇u. (25)
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If we assume ∇ · ξ = 0, it is shown that ∇ · u1 vanishes
when ξ · ∇(∇ · u) = 0. Thus, if the equilibrium velocity is
divergence-free, ∇ · ξ = 0 means incompressibility ∇ · u1 =
0.

By eliminating ξθ, ξZ and p1 from Eqs. (22) and (23)
and by using the Boussinesq approximation, we obtain

d
dR

(
1
R

d(RξR)
dR

)
− k2

×
1− 2Ω(2Ω+RΩ′)D+4Ω2ω2

A

D2
+

Geff

D

ξR=0, (26)

which is equivalent with Eq. (11) by replacing φ with RξR.
For Ω = Ω′ = 0, we multiply Eq. (26) by RξR and

integrate over R to obtain

(ω2 − ω2
A)

∫
dR

1
R

[∣∣∣∣∣d(RξR)
dR

∣∣∣∣∣
2

+ k2|RξR|2
]

+k2Geff

∫
dR

1
R
|RξR|2 = 0. (27)

This shows that the eigenvalue ω2 for IntI is real. There-
fore, the eigenvalue problem for the IntI possesses the Her-
mitian property. In fact, it can be confirmed by looking
at the evolution equation corresponding to the eigenvalue
equation (26). For Ω = Ω′ = 0, we obtain

(
i
∂

∂t

)2

LIntIξR = (ω2
ALIntI + k2Geff)ξR, (28)

where

LIntI :=
∂

∂R

(
1
R
∂

∂R
R

)
− k2. (29)

The operators on both sides of the above equation are Her-
mitian; therefore, the time evolution of ξR is governed by a
Hermitian operator as a total.

Similarly, for Geff = 0, we obtain

−a(ω2 − ω2
A)2 + b(ω2 − ω2

A) + c = 0, (30)

where

a :=
∫

dR
1
R

[∣∣∣∣∣d(RξR)
dR

∣∣∣∣∣
2

+ k2|RξR|2
]
, (31)

b := 2 k2
∫

dR
1
R
Ω(2Ω + RΩ′)|RξR|2, (32)

c := 4ω2
Ak2

∫
dR

1
R
Ω2|RξR|2. (33)

It is obvious that a and c are positive, although b can
change sign. We obtain

ω2 − ω2
A =
−b ± √b2 + 4ac

−2a
, (34)

which shows that ω2 is always real. Therefore, the eigen-
value problem for the MRI also seems to possess the Her-
mitian property like IntI. However, in fact it does not have

the Hermitian property, as will be seen in the following.
The evolution equation for the MRI can be written as

(
i
∂

∂t

)2 (
L1 I
L2 0

) (
ξR

ζR

)
= ω2

A

( −L0 0
0 I

) (
ξR

ζR

)
,

(35)

where

L2 :=
∂

∂R

(
1
R
∂

∂R
R

)
− k2, (36)

L1 := −2
∂

∂R

(
1
R
∂

∂R
R

)
+ k2

2 +
R(Ω2)′ + 4Ω2

ω2
A

 ,
(37)

L0 :=
∂

∂R

(
1
R
∂

∂R
R

)
− k2

1 + R(Ω2)′

ω2
A

 . (38)

The matrix operator on the r.h.s. of Eq. (35) is Hermitian,
but the matrix operator on the l.h.s. is not. Thus, the sys-
tem is governed by a non-Hermitian operator as a total.
Then, if we replace ∂/∂t by −iω, ω2 is generally complex.
However, we saw that ω2 was real for MRI. Therefore,
the eigenvalue problem of MRI belongs to a special class
among non-Hermitian systems.

5. Irregular Singularity and Contin-
uum of Eigenvalues
In this section, we concentrate only on the MRI [22].

If we assume the Keplerian rotation Ω2 = R−3, the eigen-
mode equation (26) can be rewritten as

d
dR

(
1
R

d(RξR)
dR

)
− k2

1 − ω2 + 3ω2
A

(ω2 − ω2
A)2

1
R3

 ξR = 0.

(39)

It is noted that the Keplerian rotation is expressed as
Ω2 = GM/R3 in the physical units, where G is the grav-
itational constant and M is the mass of the central object.
If we normalize this representation of the Keplerian rota-
tion by using a scale length R0, we obtain Ω2 = R−3 with
τ2

AGM/R3
0 = GM/v2

AR0 = 1. This relationship determines
the scale length R0 as R0 = GM/v2

A. The mass of the sun is
about 2 × 1030 kg and the diameter of the largest accretion
disk detected to date is about 2×104AU or 3×1015 m [23].
For a considerably wide range of parameters, the scale
length R0 may be much greater than the size of the ac-
cretion disks [22]. Assuming a sun-like star of one solar
mass, the approximation R � 1, which will be used in the
following analysis, does not necessarily mean that we con-
centrate only on the region very near the massive central
object.

By introducing ϕ = R1/2ξR, this equation can be cast
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in the form of the Schrödinger equation as

− d2ϕ

dR2
+ V(R;ω2)ϕ = 0, (40)

V(R;ω2) :=
3

4R2
+ k2

1 − ω2 + 3ω2
A

(ω2 − ω2
A)2

1
R3

 . (41)

We see that R = 0 is an irregular singularity. Of course, the
radius R = 0 is a mathematical artifact. We have to con-
sider a finite-radius inner boundary for the idealized model
of the disk dynamics. However, the existence of a singular-
ity at R = 0 implies that the radial structures of the modes
are highly sensitive to the boundary condition to be im-
posed near the axis. In fact, the inner boundary has been set
at a finite R position near the origin in the previous studies.
Then the resulting eigenfunctions localize around the inner
boundary [24,25], since the potential V becomes deeper as
it approaches the inner boundary from the larger R side,
and V becomes positive infinite abruptly at the boundary.
It means that the location of the localization of the eigen-
functions changes if we change the position of the inner
boundary. Therefore, we are motivated to analyze the ef-
fect of the singularity to understand the structure of modes
near R = 0. Even if the singularity is removed by changing
the model equation appropriately, the eigenmodes should
inherit the characteristics of those with singularity.

Let us analyze the eigenmodes by assuming R � 1.
Then the R−3 term becomes dominant, and we can approx-
imate the eigenmode equation as

d2ϕ

dR2
+
λ

R3
ϕ = 0, (42)

where

λ := k2 ω
2 + 3ω2

A

(ω2 − ω2
A)2

. (43)

This equation can be solved for positive λ as

ϕ = C1R1/2J1

2
√
λ

R

 + C2R1/2Y1

2
√
λ

R

 , (44)

where J1 and Y1 are the first-order Bessel functions of the
first and second kind, respectively, and C1 and C2 are arbi-
trary constants. As R becomes smaller, ξR oscillates more
rapidly. The two independent solutions ξR = ϕ/R1/2 are
plotted in Fig. 2. The oscillation of ϕ is so rapid around
R = 0 that the resolution is not sufficient in the plots. Both
solutions satisfy the boundary condition ξR = 0 at R = 0.
Then, if we try to satisfy two boundary conditions, i.e.,
ξR = 0 at R = 0 and an outer boundary R = Ra, only the ra-
tio between C1 and C2 can be determined. In other words,
the boundary conditions can be satisfied for arbitrary λ > 0
or ω2 > −3ω2

A.
It is noted that the eigenfunctions are square-

integrable [22]. Thus we have found a continuum of eigen-
values even for ω2 < 0. The eigenfunctions are non-
orthogonal with each other. In the ideal MHD model, it is

Fig. 2 The eigenfunctions ξR = R−1/2ϕ for λ = 1. (a):
J1(2(λ/R)1/2), (b): Y1(2(λ/R)1/2). Both of them satisfy
the boundary condition ξR = 0 at R = 0. The radial vari-
ation is rapid around R = 0 and becomes slower as R
increases.

known that the continua can exist only for ω2 > 0 and that
the corresponding “eigenfunctions” are orthogonal with
each other and singular or non square-integrable [26, 27].
The irregular singularity yields these curious behaviors of
the eigenvalues and eigenfunctions.

6. Conclusions
The eigenmode equations for the MRI and IntI have a

similar form, and the local stability criterion can be sum-
marized in a single statement such that the instability oc-
curs if the spatial gradient of gravity including the centrifu-
gal force is greater than the square of Alfvén frequency.
The eigenvalues are real for both the MRI and IntI, but the
MRI is essentially different from the IntI because of the
non-Hermitian property of the governing equation. The
irregular singularity at the center of the accretion disk in
the case of the Keplerian rotation yields the continuum
of eigenvalues with non-orthogonal and square-integrable
eigenfunctions.
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