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A novel set of simultaneous eigenvalue equations having dissipative terms are derived to find self-similarly
evolving and minimally dissipated stable states of plasmas realized after relaxation and self-organization pro-
cesses. By numerically solving the set of eigenvalue equations in a cylindrical model, typical spatial profiles
of plasma parameters, electric and magnetic fields and diffusion factors are presented, all of which determine
self-consistently with each other by physical laws and mutual relations among them, just as in experimental
plasmas.
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A recent generalized theory of self-organization for
finding eigenvalue equations to obtain self-similarly evolv-
ing and minimally dissipated stable states [1–6] has been
shown to incorporate a previous theory [7] for obtain-
ing the minimum dissipative state of magnetic energy, by
means of which “the so-called Taylor state” [8] can be de-
rived. The concept of selective decay together with that of
helicity invariance in the traditional theories [8–10] is an-
alytically proved in [3–5] to have theoretically unrelated
with “relaxed states”. The fusion plasma is also known
to be described for simulations by a set of charge, mass,
momentum, and energy conservation laws, and Maxwell’s
equations to follow its dynamic evolution and to analyze
relaxation processes and relaxed states. However, replace-
ment of any element in the set by “the so-called helicity
conservation law” [8–10] makes the dynamic evolution un-
traceable due to this nonphysical law. Thus, it has been
clarified that the all theoretical basis of the traditional the-
ories has no theoretical and physical connection with simu-
lation results [11, 12] and experimental ones [13,14] of the
relaxed plasma observed and reported so far. The general-
ized theory is also applicable to other relaxed states, such
as non-Taylor states with non-uniform resistivity [12], and
to dissipative dynamical structures, such as the soliton so-
lutions of the viscid Korteweg-de Vries equation [15] and
the vortex solutions of the two-dimensional incompress-
ible viscous fluid equations [6,16]. The generalized theory
is a universal theory unifying apparently different theories,
such as those of minimum dissipation of magnetic energy
in [7] and of minimal (enstrophy/energy) in [17], as ana-
lytically proved in [6].

In this paper, we present a novel set of simultane-
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ous eigenvalue equations to find self-similarly evolving
and minimally dissipated stable states realized after relax-
ation and self-organization processes. We show numeri-
cally solved spatial profiles of plasma parameters, mag-
netic and electric fields and diffusion factors of electrical
conductivity σ, viscosity ν, and thermal conductivity κ,
all of which determine self-consistently with each other by
physical laws and mutual relations, just as in experimental
plasmas [13, 14] and in simulation results [11, 12].

We have applied the generalized theory to the two-
fluid model for fully ionized, compressible, resistive, vis-
cid fusion plasmas. Substituting all equations of mass, mo-
mentum and energy conservation laws for electrons and
ions and Maxwell’s equations with the displacement cur-
rent neglected into the final equation of Eq. (13) in [6]
meaning the self-similarly evolving and minimally dissi-
pated stable states derived by the generalized theory, and
taking account of negligibly small mass of electron, quasi-
neutrality, negligibly small ion thermal conductivity, negli-
gible electron momentum and viscosity, we obtain the fol-
lowing set of simultaneous eigenvalue equations;
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−
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Π ii, j∂uii/∂x j

 (γ − 1) = −λp p , (4)

where λ is eigenvalue normalized characteristic time scale
for each quantity, and Π i is the stress tensor of ion. Us-
ing dominant terms in the relaxed quasi-steady state with
divergent-free flows, definition of dissipative factors and
conventional normalization by central values of quantities
and others as shown below, we obtain the following nor-
malized eigenvalue equations for the case of an axisym-
metric system from Eqs. (1) - (4) ;

ū · ∇̄n̄ = Λ2
imn̄ , (5)

∇̄ × (σ̄−1∇̄ × B̄p) = Λ2
Bp B̄p , (6)
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2
Bt B̄t , (7)
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where the subscripts t and p denote toroidal and poloidal
components, respectively, and normalization factors are
embedded by multiplying them to corresponding eigenval-
ues. A relation of Ti = αTe with a factor α is assumed to
determine Ti because of degeneration of two fluid model
to one fluid model. The normalization and normalized dis-
sipative factors are

t̄ ≡ t/(a/vA), vA ≡ B0/
√
µ0ρ0, ∇̄ ≡ a∇, ρ̄m ≡ ρm/ρ0,

n̄ ≡ n/n0 ≡ ne/n0, ū ≡ u/vA, B̄ ≡ B/B0, Ē ≡ E/(vAB0),

j̄ ≡ j/(B0/µ0a), T̄e ≡ Te/T0e, σ̄ ≡ T̄
3
2

e , κ̄e⊥ ≡ n̄2T̄
− 1

2
e /B̄

2,
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5
2

i (3.82×10−6T
5
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i0

√
µ0/Z lnΛaB0

√
ρ0), and Te [eV].

In the limiting case of uniform σ and negligible ν and
κ, Eqs. (1) - (4) and/or Eqs. (5) - (9) lead to the so-called
Taylor state, just the same as in [7]. In general cases, how-
ever, these equations can be applicable to finite beta con-
finement systems of the Tokamak, the reversed field pinch
(RFP), the field reversed configuration (FRC), and so on.
Using the cylindrical model for simplicity and the 4 rank
and 4th order Runge Kutta method under suitable bound-
ary conditions on measurable quantities by referring to ex-
perimental data [14], we have numerically solved Eqs. (5) -
(9) to get self-organized configurations of the RFP. A typ-
ical result is shown in Figs. 1 (a) and 1 (b) for a case of
α = 0.5, where the radial electric field Er mainly comes
from the Hall term. It is seen from the data profiles that all
physical quantities are related self-consistently with each
other, i.e., κe⊥ is determined by n, Te and B, and Te is de-
termined by κe⊥, σ and j, and so on, to lead to negligibly

Fig. 1 A typical numerical result of the self-similarly evolving
and minimally dissipated stable state for RFP plasmas.

small current density at the boundary wall like as in ex-
perimental plasmas. We also find from both profiles of up

and ut in Fig. 1 (b) that there exists the shear flow which de-
pends on the profile of ν, i.e., on that of Ti , and would con-
tribute to stabilization of the self-organized RFP plasma.

In conclusion, we have derived a novel set of si-
multaneous eigenvalue equations for finding self-similarly
evolving and minimally dissipated stable states realized af-
ter relaxation and self-organization processes (cf. Eqs. (1) -
(4) or Eqs. (5) - (9)). The set of simultaneous equations
is applicable to all types of magnetically confined fusion
plasmas. Solving numerically the set of equations in the
cylindrical model, we have shown typical self-organized
configurations of the RFP plasma including a lot of spatial
information on related physical quantities useful for de-
tailed experimental investigation. It should be emphasized
that all physical quantities of interest are self-consistently
determined by physical laws and mutual relations among
them.
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