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The effects of an external mean flow on the generation of zonal flow in drift wave turbulence are theoretically
studied in terms of a modulational instability analysis. A dispersion relation for the zonal flow instability having
complex frequency ωq = Ωq + iγq is derived, which depends on the external mean flow’s amplitude |φf | and radial
wave number kf . As an example, we chose an ion temperature gradient (ITG) turbulence-driven zonal flow as the
mean flow acting on an electron temperature gradient (ETG) turbulence-zonal flow system. The growth rate of
the zonal flow γq is found to be suppressed, showing a relation γq = γq0(1−α|φf |2k2

f ), where γq0 is the growth rate
in the absence of mean flow and α is a positive numerical constant. This formula is applicable to a strong shearing
regime where the zonal flow instability is stabilized at α|φ2

f |k2
f � 1. Meanwhile, the suppression is accompanied

by an increase of the real frequency |Ωq|. The underlying physical mechanism of the suppression is discussed.
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It is widely recognized that large-scale structures non-
linearly generated from maternal turbulence, such as zonal
flows and streamers, play an important role in regulating
turbulent transport in tokamak plasmas [1,2]. Specifically,
zonal flows that show poloidally and toroidally symmet-
ric potential fluctuation have attracted much attention since
they break up turbulent vortices and suppress heat flux.

The generation mechanisms of such large scale struc-
tures have been intensively studied. The modulational pro-
cess has been discussed as one of the plausible candidates
of such generation mechanisms [3]. From an experimental
viewpoint, it is desirable to know the parameters that may
govern the modulational process and related structures in
order to control the turbulent transport. Magnetic structure
is one of these parameters. Namely, zonal flows generated
from the electron temperature gradient (ETG)-driven tur-
bulence [4] are found to be preferentially excited in a weak
magnetic shear regime, whereas streamers are observed in
an opposite strong magnetic shear regime. The geodesic
acoustic mode (GAM) is effectively excited in a relatively
high q region [5].

Another important factor governing turbulent trans-
port is an external sheared mean flow. Besides neo-
classically driven mean flows, zonal flows driven by other
scale fluctuations originating from different free energy
sources may also be a candidate for such mean flows. It
is generally believed that the sheared mean flow directly
suppresses the transport through the decorrelation of tur-
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bulent vortices [6, 7]. However, such a mean flow may
also affect the generation of the zonal flow and indirectly
change the turbulent transport.

Kim and Diamond investigated zonal flow generation
in the presence of a sheared mean flow based on a wave-
kinetic equation and found that the mean shear flow sup-
presses the growth rate of the zonal flow [8]. However,
this result is valid only within a weak shearing limit, and
a strong shearing regime where the shearing rate becomes
comparable to the growth rate of zonal flow has not been
analyzed. Furthermore, the assumption of the scale sepa-
ration which is applied in the wave kinetic equation is not
always satisfied, as we see later.

In this paper, we investigate the generation of zonal
flow influenced by a mean flow having arbitrary spatio-
temporal scales including the strong shearing regime. For
this purpose, we employed an alternative coherent mode
coupling method for the modulational instability analysis,
which assumes neither the explicit scale separation nor the
interaction strength. As an example, we consider the gen-
eration of zonal flow due to the ETG turbulence, assum-
ing that the mean flow originates from the ion tempera-
ture gradient (ITG)-driven zonal flow. Therefore, the radial
wavelength is longer than that of the ETG turbulence as
kf ∼ k(ITG)

x � kx, where kf , k(ITG)
x , and kx are typical radial

wave numbers of the mean flow, the ITG, and ETG turbu-
lence, respectively. In this case, the real frequency ωf may
range from a low value ωf � ω∗i for the stationary ITG
turbulence-driven zonal flow to a high value ωf ∼ vi/qR
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for the GAM excitation, where ω∗i, vi and R are the ion
diamagnetic frequency, the ion thermal velocity, and major
radius, respectively. A dispersion relation for the complex
eigen-frequency of the zonal flow, i.e. ωq = Ωq + iγq, in
the presence of a time-varying mean flow is derived.

We also found that the external mean flow plays a role
in suppressing the growth rate of the zonal flow, support-
ing the result reported by Kim and Diamond. Here, we ex-
tended the analysis to a strong shearing regime and found
that the mean flow can stabilize the zonal flow generation
in the short wavelength and/or strong amplitude regimes.
The effect of the time-varying nature of the mean flow is
found to be small in the frequency range of the GAM.

Here we consider a simple slab geometry, where (x, y)
denote the radial and poloidal directions, and z is the direc-
tion of a uniform magnetic field. We assume that the ETG
turbulence is modeled by a pump wave:

φ̃p(r, t) = φ0 exp[i(kx0x + ky0y − ω0t)] + c.c., (1)

where (kx0, ky0) is the radial and poloidal wave numbers,
and ω0 is the real frequency. Hereafter, we normalize the
space coordinate, time, and potential by ρe, Ln/vte, and
ρeTe/eLn, respectively, where ρe, vte, Ln are the electron
Larmor radius, the electron thermal velocity, and the scale
length of electron density. Here, the linear drift wave dis-
persion relation ω0 = −ky0/(1 + k2

0) is satisfied, where
k2

0 = k2
x0+k2

y0. An arbitrarily small perturbation is regarded
as the seed of the secondary mode

φ̃q(r, t) = φq exp[i(kxqx + kyqy − ωqt)] + c.c., (2)

where (kxq, kyq) are the radial and poloidal wave number.
From the non-linear interaction in the Hasegawa-Mima
(HM) equation [9], two side-bands given by

φ̃±(r, t) = φ± exp[i(kx±x + ky±y − ω±t)] + c.c. (3)

are excited from the coupling between the pump wave and
the secondary wave, where the definitions kx± = kx0 ±
kxq, ky± = ky0 ± kyq and ω± = ω0 ± ωq are used. Here
we introduce a mean flow given by

φ̃f(r, t) = φf exp[i(kf x − ωf t)] + c.c., (4)

where ωf , kf , and φf are the real angular frequency, radial
wave number, and complex amplitude, respectively. Note
that these physical quantities that characterize the mean
flow are arbitrarily chosen as external parameters. Four
secondary side bands with the wave numbers (kx+±kf , ky+)
and (kx−±kf , ky−) are then excited through the coupling be-
tween the original side bands, Eq. (3), and the mean flow,
Eq. (4).

From the modulational process among above nine
waves (a pump, a mean flow, a secondary wave, and six
side bands), we constructed a dispersion relation for the
secondary mode as follows:

ωq = ωq(kq; k0, ω0, |φ0|2; kf , ωf , |φf |2). (5)

The dispersion relation is given by an eleventh-order alge-
braic equation with respect to the complex zonal flow fre-
quency ωq, and the growth rate is chosen from the eleven
complex roots as a function of (kxq, kyq). The explicit ex-
pression will be described in another paper.

In the absence of the mean flow (|φf |2 = 0) or in the
long wavelength limit (kf = 0), Eq. (5) is reduced to the
dispersion relation obtained by Li and Kishimoto [4],

ωq(1 + k2
xq) + kyq

=
−2k2

qΛ
2−(k2

0 − k2
q)[ωq(Λ0 − 4Λ2

+/k
2
q) + kyq]|φ0|2

(2ω0Λ+ + kyq + Λ0ωq)2 − (ω0k2
q + 2Λ+ωq)2

, (6)

where Λ0 = 1 + k2
0 + k2

q, Λ+ = kxqkx0 + kyqky0, and Λ− =
kxqky0 − kyqkx0 are used. Note that (kxq � 0, kyq = 0) and
(kxq = 0, kyq � 0) correspond to zonal flow and streamer,
respectively.

Here we consider the generation of zonal flow by
choosing kyq = 0. The structure of the secondary wave
was found to be related to that of maternal turbulence [4].
Namely, a radially longer pump wave (kx0 � ky0) tends to
excite zonal flows, whereas a poloidally longer pump wave
(kx0 � ky0) tends to excite streamers. We consider the for-
mer case to efficiently excite zonal flow by choosing kx0 =

sin(0.05π) and ky0 = cos(0.05π). Assuming that the ampli-
tude and wave number of the ITG turbulence-driven zonal
flow are the same order as those of the ITG turbulence,
the corresponding ratio of the potential and wave number
between ETG turbulence and ITG turbulence-driven zonal
flow are estimated as

∣
∣
∣φ(ETG)

0 /φ(ITG)
ZF

∣
∣
∣ � kf/k0 =

√
me/mi �

1/43. We have numerically solved Eq. (5) as a function of
(ωf , kf) and |φf |2.

In Fig. 1, the growth rate of zonal flow γq is illustrated
as a function of kxq in the cases of (a) kf = 0 (equiva-
lently the case with no mean flow) and (b) kf = 0.0125
and |φf |2 = 2000. It is found that the mean flow sup-
presses the growth rate by stabilizing the long wavelength
region around 0 < kxq < 0.48 and shrinking the instability
window. The radial wave number of zonal flow that pro-
vides a maximum growth rate maintains a constant value,

Fig. 1 The dependence of the growth rate of zonal flow as a
function of the wave number of zonal flow kxq in the case
of (a) kf = 0 and (b) kf = 0.0125 and |φf |2 = 2000.
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Fig. 2 The dependence of (a) growth rate γq and (b) real fre-
quency Ωq as a function of mean flow energy |φf |2. The
real frequency of the mean flow is chosen to ωf = 0.

kxq = 0.75, insensitive to the mean flow, which is the same
order as the pump wave k0 = 1.0.

Figure 2 shows the dependence of (a) growth rate γq

and (b) real frequency Ωq of the zonal flow with respect
to the mean flow energy |φf |2 for various kf in the case of
ωf = 0 (i.e., stationary mean flow). It is found that the
growth rate also shows a tendency to decrease with respect
to |φf |2. The suppression effect becomes more prominent as
the wavelength of the mean flow becomes shorter as seen
in Fig. 2 (a). This may be compared to the E × B shearing
suppression of vortices by an external mean flow [6,7], al-
though the parametric dependence is different. As shown
in Fig. 2 (b), we note that the real frequency |Ωq| once
crosses zero value and increases with |φf |2 to the same or-
der as the growth rate, suggesting that the mean flow sup-
presses the growth rate by having a large real frequency.

Figure 3 illustrates the contour plot of (a) growth rate
γq and (b) real frequency Ωq in the (k2

f , |φf |2) space. It
is shown that the growth rate of the zonal flow decreases
almost symmetrically with respect to k2

f and |φf |2, so that
the growth rate is given approximately by

γq � γq0(1 − α|φf |2k2
f ), (7)

where γq0 is the growth rate without mean flow, and α is a
numerical constant roughly given by α = 1.2 − 1.8 in the

Fig. 3 Contour plot of (a) growth rate γq and (b) real frequency
Ωq as a function of wave number kf and mean flow energy
|φf |2. The real frequency of the mean flow is chosen as
ωf = 0.

present case.
Next, we consider a time-varying mean flow by choos-

ing ωf � 0. The growth rate (a) γq and (b) real frequency
Ωq are shown as a function of the frequency of mean flow
ωf . Here, the same wave number and mean flow energy as
those used in Fig. 2 are chosen. The growth rate is found
to increase with ωf as shown in Fig. 4 (a). Namely, the
suppression effect is weakened by the time variation of the
mean flow. However, the effect is found to be small in the
region of ITG turbulence-driven zonal flow, i.e., ωf < 0.1,
showing that the time variation of mean flow has less effect
on the modulational process.

Here, we investigate the mechanism of the suppres-
sion of zonal flow generation due to a mean flow. For the
sake of simplicity, the mean flow is assumed to be station-
ary, i.e., ωf = 0. As discussed above, the mean flow gener-
ates secondary side bands kx+ ± kf to the side band of kx0,
i.e., kx+ = kx0+ kxq. Here let us consider a sub-system con-
sisting of a set of three side bands, i.e., φkx+ and φkx+±kf , and
the mean flow φkf , and construct a dispersion relation for
the local modulational process by regarding that the mean
flow φkf as a pump wave and a side band φkx+ as a seed.
Then, the dispersion relation is written as follows:

ω(1 + k2
qs) + ky0

=
2k2

f k2
qsk

2
y0(k2

qs − k2
f )ω(Λ + ky0/ω − 4k2

f k2
x+/k

2
qs)|φf |2

[Λω + ky0]2 − 4k2
f k2

x+ω
2

, (8)
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Fig. 4 The dependence of growth rate (a) γq and (b) real fre-
quency Ωq as a function of real frequency ωf . The
wave number and mean flow energy are chosen as kf =

0.0125, |φf |2 = 2000.

where definitions Λ = 1 + k2
f + k2

qs and k2
qs = k2

x+ + k2
y0 are

used. This is a third-order algebraic equation with respect
to the complex frequency ω of the original side band φkx+ .
Therefore, when the root of Eq. (8) becomes complex con-
jugate solutions, i.e., ω = ωr ± iγ, the modulational loop
becomes unstable. In this case, the mean flow becomes
a free energy source destabilizing the side band so that
the original zonal flow instability may be enhanced. We
have solved Eq. (8) in the same parameter region as seen
in Fig. 3. Figure 5 illustrates the dependence of three roots
of Eq. (8) as a function of |φf |2 in the case of kf = 0.0125.
All three roots are found to be real values in the present pa-
rameter region, suggesting that the side band φkx+ exhibits
a stationary oscillation without growing. Since the effect
of the mean flow vanishes at |φf |2 = 0, we choose a solu-
tion marked (∗) in Fig. 5 that tends to ω = 0 at |φf |2 = 0.
The real frequency |ω| of the present sub-system in Fig. 5
is the same order as the change of the real frequency |Ωq|
seen in Fig. 2 (b), i.e., for example |Ωq| � 0.1 and |ω| � 0.4
for |φf |2 = 2000. Therefore, it may be noted that the sta-
tionary forced oscillation to the side band kx± = kx0 ± kxq

due to the mean flow is related to the increase of |Ωq| with
respect to |φf |2 and the resultant reduction/stabilization of

Fig. 5 The dependence of three roots of Eq. (8) as a function of
mean flow energy |φf |2. The wave number of the mean
flow is chosen kf = 0.0125.

zonal flow instability.
We have theoretically investigated the effects of an ex-

ternal mean flow on the generation of zonal flow due to
ETG-driven turbulence in terms of a modulational insta-
bility analysis including a strong shearing regime. The
main result demonstrates that the mean flow suppresses
the growth rate of the zonal flow by having a large real
frequency according to a relation γq = γq0(1 − α|φf |2k2

f ).
The effect of the time-varying nature of the mean flow is
found to be small in the frequency range of the GAM. This
may be compared with the consideration that the suppres-
sion effect of turbulence is weakened in the presence of a
time-varying E× B mean flow [10]. In our next paper, the
present analysis will be extended to the toroidal geometry.
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