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Stochastic Approach to Modeling Fluctuating Flow
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In fluid equations describing edge plasma transport, the fluctuating flow causing anomalous transport is
frequently interpreted as noise. The transport which is generated by the noise is represented as diffusion. In

the present paper, the validity of the anomalous diffusion model of the fluctuating flow, i.e.,
↔
Γa = −

↔
Da · ∇u, is

examined from the viewpoint of a stochastic approach to modeling, where u is a velocity field and
↔
Da is a tensor

of an anomalous diffusion coefficient. The examination is carried out on the presupposition that the validity of
the diffusion model itself is not strongly related to details of the edge plasma. If the diffusion model is derived
directly from the fundamental properties of the fluctuating flow, then the model is understood to be not merely an
approximate description of the anomalous transport but to be inherent in the transport. However, it is found that
because the noise given from the fluctuating flow is essentially bounded, the transport modeling is not justified.
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1. Introduction
In studies of edge plasma transport, a simplified fluid

model is frequently employed if the collisionality of the
plasma particles is strong [1]. The fluid model is based on
simplified Braginskii’s fluid equations neglecting the elec-
tric field and plasma current; i.e., the simple neutral plasma
is assumed, where the fluid equations of the density, mo-
mentum, and energy are written in the Fokker-Planck form
[1–4]. From the analogy of the Feynman-Kac (FK) for-
mula [5], stochastic differential equations (or Langevin
equations) are used to solve the fluid equations describ-
ing the edge plasma transport in a three-dimensional (3D)
magnetic field line structure including an ergodic zone
with magnetic islands [2–4]. This is because of the dif-
ficulty in realizing the partial differential operators along
and across a field line, ∇‖ and ∇⊥, in the 3D field line
structure. However, since the equation of the fluid mo-
tion, i.e., the Navier-Stokes (NS) -type equation, is non-
linear, the FK formula cannot be directly applied to it. An-
other stochastic approach which is based on Yasue’s theo-
rem [6,7] is needed to understand the statistical properties
of the transport, as seen in Sec. 2.

As observed in most experiments [1], the transport
of edge plasma is large compared with the classical dif-
fusion. In the fluid equations, Fick’s law of diffusion,
→
Γa = −

↔
Da · ∇ f , is frequently employed to describe the

anomalous transport generated by the fluctuating flow in
the edge plasma [1–4, 8, 9], where a fluid quantity f ex-
presses the density, momentum (or velocity), and energy

(or temperature), and
↔
Da is an anomalous diffusion coeffi-

cient. The present paper is devoted to, in particular, exam-
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ining the validity of the diffusion model of the fluctuating

flow in the equation of fluid motion, i.e.,
↔
Γa = −

↔
Da · ∇u,

from the viewpoint of the stochastic approach to the mod-
eling, where u denotes the velocity field. If the diffusion
model is derived directly from fundamental properties of
the fluctuating flow, then the model is understood to be
not merely an approximate description of the anomalous
transport but to be inherent in the transport. The exami-
nation is carried out without support of numerical simu-
lations, and the validity is investigated under the follow-
ing conditions: (i) a constant mass density, (ii) the incom-
pressibility ∇ · u = 0, (iii) interactions between the plasma
and neutrals or solid surfaces are neglected, (iv) a simple
viscosity term describing the effect of the Coulomb col-
lision, i.e., the simple representation of the classical dif-

fusion: −∇ · (↔Dc · ∇u) = −ν∇2u with a constant viscosity
coefficient ν = constant, and (v) the simplified fluid has the
periodic boundary in 3D space. Although the state of edge
plasma under these conditions is far from the actual situa-
tion, the validity of the diffusion model itself is considered
to be not strongly related to the details of edge plasma.

This paper is organized as follows. In Sec. 2, we ex-
amine the validity of the diffusion model of the fluctuat-
ing flow from the viewpoint of a Langevin equation which
is the equation of the fluid particle motion correspond-
ing to the NS equation. In Sec. 2.1, the stochastic ap-
proach checking the diffusion model is briefly introduced.
In Sec. 2.2, it is found that if noise in the velocity field is
essentially bounded, then the diffusion model is not justi-
fied. Finally, a summary is given in Sec. 3.
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2. Stochastic Approach to Fluctuating
Flow

2.1 Navier-Stokes equation and stochastic
process

We focus on the equation of fluid motion, i.e., the NS
equation, in 3D space R3. By assuming the incompress-
ibility ∇ · u = 0 and the constant mass density,

{
∂

∂t
+ u(t, x) · ∇ − ν∇2

}
u(t, x) = −∇ϕ(t, x), (1)

where the source/sink of momentum is assumed to be given
as Sm = −∇ϕ(t, x), ϕ is a scalar function, and x denotes an
element of the set R3, i.e., x ∈ R3. From Yasue’s theo-
rem [6, 7], the variation of the functional JX gives the NS
equation (1);

JX =

∫ tb

ta

dt E

[
1
2

∣∣∣∣DXt

∣∣∣∣2 − ϕ(t, Xt)

]
, (2)

where E[·] denotes the mathematical expectation. A
volume-preserving diffusion process Xt having start and
end points Xta = xa and Xtb = xb is mean forward differ-
entiable:

DXt := lim
ε↓0

1
ε

E
[
Xt+ε − Xt

∣∣∣∣PX
t

]
= u(t, Xt), (3)

where the notation ↓ means “decreases to,” and sometimes
the limit in Eq. (3) may denote limε→0+ [10]. Here, E[·|PX

t ]
denotes the conditional expectation with respect to PX

t , the
σ-algebra PX

t is generated by {Xs; ta ≤ s ≤ t} [11], and the
stochastic process Xt satisfies the Langevin equation:

dXt = u(t, Xt)dt +
√

2νdWt, (4)

where Wt denotes a Wiener process [10]. Thus, the equa-
tion of motion of a fluid particle is given as the Langevin
equation (4). The theorem implies that the stochasticity of
the fluctuating flow can be understood through a stochastic
process Yt satisfying DYt = u(t,Yt) and δJY = 0.

2.2 Statistics of fluctuating flow
In studies of edge plasma, the fluctuating flow caus-

ing anomalous transport is frequently interpreted as noise.
We then introduce the equation of motion of a fluid parti-
cle having turbulent Lagrangian velocity ũ(t, ω) in which
randomness is inherent,

dYt = ũ(t, ω)dt +
√

2νdWt, (5)

where the stochastic process Yt : [ta, tb] × Ω → R3 is an
Itô process, Ω is the ensemble of the fluid particles (or the
sample space), ω is a typical element (or a sample point) of
Ω, i.e., ω ∈ Ω, R3 is the 3D Euclidean space, and x ∈ R3;
see also Ref. [5]. Here, the noise ũ(t, ω) is assumed to
satisfy

E
[
ũ(t, ω)

∣∣∣∣PY
t

]
= u(t,Yt), (6)

where u(t, x) = (u1(t, x), u2(t, x), u3(t, x)), and ∇ · u = 0.
The fluctuating flow is understood to be noise because

of the lack of accurate information regarding the motions
of the fluid particles, e.g., their initial conditions. If the
fluctuating flow is a solution of the equation of fluid mo-
tion, then it is natural that the noise ũ(t, ω) given from the
fluctuating flow is essentially bounded, where there is a
positive constant U satisfying the condition |ũ(t, ω)| ≤ U
for almost all t ∈ [ta, tb] and almost all ω ∈ Ω. One
may consider that the fluctuating flow is generated by per-
turbed electric/magnetic fields [1, 8, 9]. Because the per-
turbed fields satisfy the Maxwell equations, it is also natu-
ral that the turbulent velocity ũ(t, ω) in this case is essen-
tially bounded.

Since the velocity ũ is essentially bounded as
|ũ(t, ω)| ≤ U, the velocity ũ(t, ω) satisfies

lim
ε↓0

1
ε

E
[
ε2ũi(t, ω)ũ j(t, ω)g(t,Yt)

∣∣∣∣PY
t

]

= lim
ε↓0
εE

[
(ũi
+ − ũi

−)(ũ j
+ − ũ j

−)

{
g+(t,Yt) − g−(t,Yt)

}∣∣∣∣PY
t

]
= 0, (7)

where ε is a time interval, g(t, x) is a smooth function sat-
isfying |g(t, x)| < ∞, g+ = max{g, 0}, g− = max{−g, 0},
ũ = (ũ1, ũ2, ũ3), ũi

+ = max{ũi, 0}, ũi− = max{−ũi, 0}, and

0≤ lim
ε↓0
εE

[
ũi
±ũ j
±g
±(t,Yt)

∣∣∣∣PY
t

]
≤ lim
ε↓0
εU2g±(t,Yt) = 0.

(8)

In the same manner, we have the following for the case of
n ≥ 3:

lim
ε↓0

1
ε

E
[
εnũi1 (t, ω)ũi2(t, ω) · · · ũin(t, ω)g(t,Yt)

∣∣∣∣PY
t

]
=0,

(9)

where ik = 1, 2, 3 for k = 1, 2, . . . , n. The velocity ũ(t, ω)
also satisfies

lim
ε↓0

1
ε

E
[
εũi(t, ω)

{
W j

t+ε −W j
t

}
g(t,Yt)

∣∣∣∣PY
t

]
= 0, (10)

where Wt = (W1
t ,W

2
t ,W

3
t ). In the same manner, we have

the following for the case of n ≥ 1 and m ≥ 1:

lim
ε↓0

1
ε

E
[
εnũi1 (t, ω)ũi2(t, ω) · · · ũin(t, ω)
{
W j1

t+ε −W j1
t

} {
W j2

t+ε −W j2
t

}
· · ·

{
W jm

t+ε −W jm
t

}
g(t,Yt)

∣∣∣∣PY
t

]
= 0. (11)

Note that only the condition |ũ| ≤ U is used in Eqs. (7)-(11)
and the detailed statistical properties of ũ are not required.

As a result, we have the following: for a smooth func-
tion g(t, x)
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Dg(t,Yt)

= lim
ε↓0

1
ε

E
[
g(t + ε,Yt+ε) − g(t,Yt)

∣∣∣∣PY
t

]

= lim
ε↓0

1
ε

E

[
ε
∂g

∂t
(t,Yt) +

{
Yt+ε − Yt

}
· ∇g(t,Yt)

+
1
2

∑
i, j

{
Yi

t+ε − Yi
t

}{
Y j

t+ε − Y j
t

} ∂2g

∂xi∂x j
(t,Yt) + · · ·

∣∣∣∣∣∣PY
t


=

(
∂

∂t
+ u · ∇ + ν∇2

)
g(t,Yt), (12)

where the displacement of Yt = (Y1
t , Y

2
t , Y

3
t ) is given as{

Yi
t+ε − Yi

t

}
= εũi(t, ω) +

√
2ν

{
Wi

t+ε −Wi
t

}
, (13)

the second term on the right-hand side of Eq. (12) is de-
rived from

lim
ε↓0

1
ε

E

[{
Yi

t+ε − Yi
t

} ∂g
∂xi

(t,Yt)

∣∣∣∣∣∣PY
t

]

= E
[
ũi(t, ω)

∣∣∣∣PY
t

]
∂g

∂xi
(t,Yt)

= ui(t,Yt)
∂g

∂xi
(t,Yt), (14)

and the following are obtained: for the case of n = 1 or
n ≥ 3

lim
ε↓0

1
ε

E

[{
Wi1

t+ε −Wi1
t

}{
Wi2

t+ε −Wi2
t

}
· · ·

{
Win

t+ε −Win
t

}

∂ng

∂xi1∂xi2 · · · ∂xin
(t,Yt)

∣∣∣∣∣∣PY
t

]
= 0, (15)

and for n = 2

lim
ε↓0

1
ε

E

[{
Wi

t+ε −Wi
t

}{
W j

t+ε −W j
t

} ∂2g

∂xi∂x j
(t,Yt)

∣∣∣∣∣∣PY
t

]

= δi j ∂
2g

∂xi∂x j
(t,Yt); (16)

see also Ref. [5]. Note that the terms having the nth or-
der derivatives ∂ng/∂xi1∂xi2 · · · ∂xin with n ≥ 3 vanish in
Eq. (12). Consequently, we see the following:

0 = δJY

=

∫ tb

ta

dt E
[(

DδYt

)
·
(
DYt

)
− δYt · ∇ϕ(t,Yt)

]

=

∫ tb

ta

dt
∫

M

dV(x) µ(t, x)

{(
Ah(t, x)

)
· u(t, x)−h(t, x) · ∇ϕ(t, x)

}

= −
∫ tb

ta

dt
∫

M

dV(x) µ(t, x)

h(t, x) ·
{
A∗u(t, x)+∇ϕ(t, x)

}
, (17)

where M is a region in which the fluid exists, dV(x) is
the volume element, the probability density of the process
Yt, i.e., µ(t, x), is constant because of the constant mass
density, h(t, x) = δYt is an arbitrary smooth function sat-
isfying h(ta, xa) = h(tb, xb) = 0, and the differential oper-
ators A and A∗ are given as A = ∂/∂t + u · ∇ + ν∇2 and
A∗ = ∂/∂t + u · ∇ − ν∇2, respectively. Thus, we have

{
∂

∂t
+ u(t, x) · ∇ − ν∇2

}
u(t, x) = −∇ϕ(t, x). (18)

Therefore the turbulent velocity ũ(t, ω) cannot affect the
viscosity term in the NS equation if ũ(t, ω) is essentially
bounded.

3. Summary
In the present paper, we have considered the question

whether the diffusion model of the fluctuating flow is in-
herent in anomalous transport, from the viewpoint of the
stochastic approach to modeling the edge plasma in the
NS-type equation. The examination is carried out based
on the presupposition that the validity of the anomalous
diffusion model itself is not strongly related to the details
of the edge plasma.

Because the NS-type equation is nonlinear, the well-
known approach to the modeling shown in, for example,
Refs. [12–14] cannot explain the anomalous diffusion in
the equation. We should note that this approach indispens-
ably employs the linearity of a fluid quantity.

Thus, we have introduced the stochastic approach
based on Yasue’s theorem [6, 7]. The fluctuating flow is
understood to be bounded noise because the nonlinearity
of the fluctuating flow causes a lack of the accurate infor-
mation and the fluctuating flow itself is bounded, as dis-
cussed in Sec. 2. We see that the diffusion model is based
on the assumption of an unboundedly fluctuating flow. It
is found that because the noise is essentially bounded, the
transport modeling is not justified.

In future work, the stochastic approach will be devel-
oped into a useful method of realistically modeling edge
plasma.
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