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WKB Analysis of Axisymmetric Magneto-Rotational Instability
in a Thin Accretion Disk
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The temporal behavior of axisymmetric magneto-rotational instability in a thin accretion disk is analyzed
via the Wentzel-Kramars-Brillouin (WKB) method. The height of the thin disk is used as a small parameter. It is
found that the oscillation of the envelope of the mode accelerates with time because of the density distribution in
the direction of the disk height.
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Magneto-rotational instability (MRI) [1, 2] in accre-
tion disks [3] has attracted much attention in astrophysics
research since Balbus and Hawley pointed it out as a can-
didate for explaining the “anomalous” angular momentum
transport in accretion disks [4]. In Ref. [4], the MRI was
studied by local analysis which assumes a sinusoidal wave
in the radial and height directions of the accretion disk.
The global mode was discussed in, for example, Ref. [5];
however, they also adopted a sinusoidal wave in one of the
radial and height directions. It is also noted that most of
the MRI studies, except for the nonlinear numerical stud-
ies, are based on the eigenvalue approach. In this paper, we
analyze the temporal behavior of the axisymmetric MRI
in a thin accretion disk as an initial-value problem. The
Wentzel-Kramars-Brillouin (WKB) method is applied and
the sinusoidal wave is assumed in neither the radial nor
height directions. The height of the thin disk is utilized as
a small parameter in the WKB analysis.

In the present study, we adopt the ideal magnetohy-
drodynamics (MHD) model. Before analyzing the stabil-
ity, we briefly mention the equilibrium of the accretion
disk. Here we assume a simple geometry with the velocity
field v = RΩ(R)ϕ̂ and the magnetic field B = BẐ, where
Ω(R) is an angular rotation frequency, B is a constant, ϕ̂
and Ẑ are the unit vectors in the directions ϕ and Z in the
cylindrical coordinates (R, ϕ, Z), respectively. Then, from
the force-balance equation

ρv · ∇v = (∇ × B) × B − ∇p − ρ∇Φ, (1)

we obtain the mass density ρ and the angular rotation fre-
quency Ω as
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ρ = ρ0(R) exp

[
GM

c2
s

{
(R2 + Z2)−1/2 − R−1

}]
, (2)

Ω2 =
1
R

[
c2

s
∂ lnρ0

∂R
+

GM
R2

]
, (3)

where p is the pressure, Φ is the gravitational potential, ρ0

is an integration constant, cs :=
√

p/ρ is the isothermal
sound speed assumed to be constant, G is the gravitational
constant, and M is the mass of the central object. The self-
gravity is neglected. If we drop ∂(ln ρ0)/∂R, we obtain the
Keplerian rotation Ω2 = GMR−3, for which Eq. (2) can be
rewritten as

ρ = ρ0(R) exp(−Z2/H2), (4)

H :=
√

2cs/Ω (5)

in the limit of R � Z. The scale height H is much smaller
than typical radius R when the plasma rotation velocity RΩ
is much larger than the sound speed cs.

In the stability analysis, the mode structure we are
considering is shown in Figure 1. It has a very short wave
length in the Z direction, and has also an envelope in Z
whose scale length is comparable to the scale height of the
accretion disk. In order to express such a mode structure,
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Fig. 1 The mode structure with three different scale lengths.
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we introduce the following form for perturbed quantities Q̃
such as ρ̃, ṽ and B̃:

Q̃(R, Z, t) =
∞∑
j=0

H j
0Q̃( j)(R, Z, t)

× exp
[
i H−2

0 S 0(Z, t) + i H−1
0 S 1(R, Z, t)

]
, (6)

where H0 :=
√

2cs/(R0Ω0) is a small parameter and Ω0

is the angular rotation frequency at a representative ra-
dius R = R0. Then (1/Q̃)∂Q̃/∂Z ∼ kZ ∼ O(H−2

0 ). Also,
Ω ∼ O(H−1

0 ) from Eq. (5) when cs ∼ O(1). For the MRI to
occur, the plasma rotation frequency should not be signif-
icantly smaller than the Alfvén frequency [4]; we should
have Ω ∼ kZvA where vA := B/

√
ρ is the Alfvén veloc-

ity. Then vA or B should be O(H0). Finally, note that the
equilibrium density gradient in the Z direction is treated as
O(H−1

0 ).
Substituting Eq. (6) into the linearized MHD equa-

tions and using the ordering described above, we obtain,
in the lowest order O(H−2

0 ),

ω5
0(ω2

0 − c2
s k2

Z0) = 0, (7)

where ω0 := ∂S 0/∂t and kZ0 := ∂S 0/∂Z. Then we obtain
ω0 = 0 and ω2

0 − c2
s k2

Z0 = 0. The latter gives the sound
wave which propagates in the Z direction. Here we are
not interested in that branch; we take ω0 = 0. Then S 0 =

S 0(Z). The corresponding eigenvector is given by ρ̃(0) =

ṽ(0)
Z = 0 and the other quantities ṽ(0)

R , ṽ(0)
ϕ , B̃(0)

R , B̃(0)
ϕ , and

B̃(0)
Z are arbitrary.

The equations in the next order O(H−1
0 ) give the fol-

lowing dispersion relation

ω2
1 = k2

Z0v̄2
A + Ω̄(2Ω̄ + RΩ̄′)

±
√
Ω̄2

[
4k2

Z0v̄2
A + (2Ω̄ + RΩ̄′)2

]
, (8)

where ω1 := ∂S 1/∂t, kR := ∂S 1/∂R, Ω̄ := H0Ω and v̄A :=
vA/H0. The prime denotes the derivative with respect to
R. This is basically the same with the dispersion relation
obtained by the conventional analysis [4]. The minus-sign
branch yields instability. The eigenvector yields B̃(0)

Z = 0,
and ṽ(0)

R , ṽ(0)
ϕ and B̃(0)

ϕ can be represented in terms of B̃(0)
R .

The equations in O(1) can be summarized in a single
equation for B̃(0)

R by utilizing the eigenvector obtained in
the previous order as

1

B̃(0)
R

∂B̃(0)
R

∂t
= i

kZ1

ω1
v̄2

AkZ0

×
[
1 ± 2|Ω̄|

{
4v̄2

Ak2
Z0 + (2Ω̄ + RΩ̄′)2

}−1/2
]
, (9)

where kZ1 := ∂S 1/∂Z. Since ∂S 1/∂t = ω1(R, Z; kZ0), we
obtain S 1 = ω1t+S 10(R, Z; kZ0) where S 10 is an integration
constant. Then kZ1 := ∂S 1/∂Z = kZ11t+kZ10 where kZ11 :=
∂ω1/∂Z and kZ10 := ∂S 10/∂Z. The wave number in the Z
direction changes in time due to the Z dependence of ω1

which originates from the density distribution in Z. Thus
we can integrate Eq. (9) to obtain

B̃(0)
R (R, Z, t; kZ0) = B̃(0)

R (R, Z, 0; kZ0)

× exp

 i v̄2
AkZ0

ω1

(
1
2
∂ω1

∂Z
t2 + kZ10t

)

×
{
1 ± 2|Ω|

[
4v̄2

Ak2
Z0 + (2Ω̄ + RΩ̄′)2

]−1/2
}]
, (10)

where B̃(0)
R (R, Z, 0; kZ0) is an initial value. The term

(1/2)(∂ω1/∂Z)t2 in the exponential factor shows that the
oscillation of the envelope becomes increasingly faster in
time since it depends on t2. The local frequency or the
growth rate ω1 depends on Z through the Alfvén velocity
vA or the density distribution (the magnetic field B is con-
stant).

In conclusion, we have succeeded in capturing the
transient phenomena of MRI, Eq. (10), for the first time;
this has not been captured using the eigenvalue approach
in long cylinder geometry. Such transient phenomena are
absolutely necessary to explain the observed radiation vari-
ability [3]. Although we have used such a simple equilib-
rium magnetic field, it may be enough to point out the sig-
nificant importance of the global treatment of MRI as well
as the initial-value approach.
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