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WKB Analysis of Axisymmetric Magneto-Rotational Instability
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The temporal behavior of axisymmetric magneto-rotational instability in a thin accretion disk is analyzed
via the Wentzel-Kramars-Brillouin (WKB) method. The height of the thin disk is used as a small parameter. It is
found that the oscillation of the envelope of the mode accelerates with time because of the density distribution in

the direction of the disk height.
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Magneto-rotational instability (MRI) [1, 2] in accre-
tion disks [3] has attracted much attention in astrophysics
research since Balbus and Hawley pointed it out as a can-
didate for explaining the “anomalous” angular momentum
transport in accretion disks [4]. In Ref. [4], the MRI was
studied by local analysis which assumes a sinusoidal wave
in the radial and height directions of the accretion disk.
The global mode was discussed in, for example, Ref. [5];
however, they also adopted a sinusoidal wave in one of the
radial and height directions. It is also noted that most of
the MRI studies, except for the nonlinear numerical stud-
ies, are based on the eigenvalue approach. In this paper, we
analyze the temporal behavior of the axisymmetric MRI
in a thin accretion disk as an initial-value problem. The
Wentzel-Kramars-Brillouin (WKB) method is applied and
the sinusoidal wave is assumed in neither the radial nor
height directions. The height of the thin disk is utilized as
a small parameter in the WKB analysis.

In the present study, we adopt the ideal magnetohy-
drodynamics (MHD) model. Before analyzing the stabil-
ity, we briefly mention the equilibrium of the accretion
disk. Here we assume a simple geometry with the velocity
field v = RQ(R)® and the magnetic field B = BZ, where
Q(R) is an angular rotation frequency, B is a constant, ¢
and Z are the unit vectors in the directions ¢ and Z in the
cylindrical coordinates (R, ¢, Z), respectively. Then, from
the force-balance equation

pv-Vv=(VxB)XB-Vp-pVa, (1)

we obtain the mass density p and the angular rotation fre-
quency 2 as
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where p is the pressure, @ is the gravitational potential, pg
is an integration constant, ¢y := \/17,0 is the isothermal
sound speed assumed to be constant, G is the gravitational
constant, and M is the mass of the central object. The self-
gravity is neglected. If we drop d(Inpg)/0R, we obtain the
Keplerian rotation 2> = GMR3, for which Eq. (2) can be
rewritten as

p = po(R) exp(=Z*/H?), 4)
H = V2¢,/Q )

in the limit of R > Z. The scale height H is much smaller
than typical radius R when the plasma rotation velocity RQ
is much larger than the sound speed c;.

In the stability analysis, the mode structure we are
considering is shown in Figure 1. It has a very short wave
length in the Z direction, and has also an envelope in Z
whose scale length is comparable to the scale height of the
accretion disk. In order to express such a mode structure,

Fig. 1 The mode structure with three different scale lengths.
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we introduce the following form for perturbed quantities Q
such as p, ¥ and B:

OR,Z,1) = Z HIQV(R,Z,1)
=0

x exp [i Hy*So(Z.1) + i Hy'S\(R. Z.1)] (6)
where Hy := \/zc5 /(Ro€p) is a small parameter and
is the angular rotation frequency at a representative ra-
dius R = Ry. Then (1/0)0Q/0Z ~ k; ~ O(H,?). Also,
Q ~ O(H,") from Eq. (5) when ¢ ~ O(1). For the MRI to
occur, the plasma rotation frequency should not be signif-
icantly smaller than the Alfvén frequency [4]; we should
have Q ~ kzva where vo := B/+/p is the Alfvén veloc-
ity. Then v4 or B should be O(Hy). Finally, note that the
equilibrium density gradient in the Z direction is treated as
O(HY.

Substituting Eq. (6) into the linearized MHD equa-
tions and using the ordering described above, we obtain,
in the lowest order O(H,; ),

wy(W§ = c2kGy) = 0, (7)
where wg := 0S(/0t and kzg := 0S(¢/0Z. Then we obtain
wo = 0 and w(z) - cf,kéo = 0. The latter gives the sound
wave which propagates in the Z direction. Here we are
not interested in that branch; we take wg = 0. Then S =
So(Z). The corresponding eigenvector is given by p©@ =
ﬁg)) = 0 and the other quantities 1753), f)(wo), Bg)), B&O), and
BY are arbitrary.

The equations in the next order O(H,, 1) give the fol-
lowing dispersion relation

w%z 2 =2

ks + Q(2Q + RQ)

. \/Qz 42,72 + 22+ R2)? ®)
where w, := 35 /0t, kg 1= 8S/OR, Q := HyQ and ¥, :=
va/Hy. The prime denotes the derivative with respect to
R. This is basically the same with the dispersion relation
obtained by the conventional analysis [4]. The minus-sign
branch yields instability. The eigenvector yields B(ZO) =0,
and f)g)), 1~,<¢O> and BfPO) can be represented in terms of Bg)).

The equations in O(1) can be summarized in a single
equation for Bg)) by utilizing the eigenvector obtained in
the previous order as

(0
: 8B§Q)—ikﬂv2k
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where kz; := 05 /0Z. Since 0S/0t = wi(R,Z; kzp), we
obtain S| = wt+S10(R, Z; kz9) where S | is an integration
constant. Then kz; := 08 1/0Z = kz11t +kz10 Where kz11 =
0wy /0Z and kz1o := 0S10/0Z. The wave number in the Z
direction changes in time due to the Z dependence of w;
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which originates from the density distribution in Z. Thus
we can integrate Eq. (9) to obtain

B (R Z,t:kz0) = B (R Z,0; kzo)

)
iVikzo (10w ,
X ———1" + kz0t
CXP[ o (2 97 Z10
— — -1/2
x{1¢2|9| 473k + 22 + RQ'Y?] / }] (10)
where Bg))(R,Z, 0;kz0) is an initial value. The term

(1/2)(Ow; /AZ)f in the exponential factor shows that the
oscillation of the envelope becomes increasingly faster in
time since it depends on 2. The local frequency or the
growth rate w; depends on Z through the Alfvén velocity
va or the density distribution (the magnetic field B is con-
stant).

In conclusion, we have succeeded in capturing the
transient phenomena of MRI, Eq. (10), for the first time;
this has not been captured using the eigenvalue approach
in long cylinder geometry. Such transient phenomena are
absolutely necessary to explain the observed radiation vari-
ability [3]. Although we have used such a simple equilib-
rium magnetic field, it may be enough to point out the sig-
nificant importance of the global treatment of MRI as well
as the initial-value approach.
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