

プロジェクトレビュー - 6年間の成果と次期計画 -

5. FRONTIER 計画(2019年度~2024年度)

5. FRONTIER Project (2019-2024)

波多野雄治, 横峯健彦¹⁾, 檜木達也¹⁾, 橋本直幸²⁾, 大矢恭久³⁾, 大塚哲平⁴⁾, 近藤正聡⁵⁾, 宮澤順一⁶⁾, 長坂琢也⁶⁾ HATANO Yuji, YOKOMINE Takehiko¹⁾, HINOKI Tatsuya¹⁾, HASHIMOTO Naoyuki²⁾, OYA Yasuhisa³⁾, OTSUKA Teppei⁴⁾, KONDO Masatoshi⁵⁾, MIYAZAWA Junichi⁶⁾ and NAGASAKA Takuya⁶⁾ 富山大学, 京都大学¹⁾, 北海道大学²⁾, 静岡大学³⁾, 近畿大学⁴⁾, 東京工業大学⁵⁾, 核融合科学研究所⁶⁾ (原稿受付: 2020年1月7日)

プラズマ対向機器中に存在する異種材料・異相界面における反応ダイナミクスと輸送現象,ならびにそれら に及ぼす中性子照射効果を明らかにすることを目的として,日米科学技術協力事業のもと FRONTIER 計画が開 始された.PHENIX計画で構築されたWのバルク特性に及ぼす中性子照射効果に関するデーターベース等と統合 することで,プラズマ対向機器全体としての特性評価が可能となる.本章では,この新しいプロジェクトの概要 を紹介する.

Keywords:

plasma facing component, divertor, neutron irradiation, tritium, liquid metal, interface, corrosion

5.1 プロジェクトの目的

プラズマ対向材料,構造材料,冷却材等から構成される プラズマ対向機器 (PFC)中には,必然的に異種材料間お よび異相間の界面が存在する.中性子照射下では,原子の 弾き出しや電子の励起により界面反応が大きく促進される と共に,核変換で生成される不純物元素の界面への偏析等 により材料特性が著しく変化する可能性があるが,界面現 象に焦点をあてた照射研究はほとんどなされていない.

そこで我々は、タングステン被覆PFCおよび先進液体ダ イバータにおける界面反応のダイナミクスと、それに及ぼ す中性子照射効果を明らかにするため、日米プロジェクト 研究「原型炉ダイバータにおける界面反応ダイナミクスと 中性子照射効果」(2019年度~2024年度)を提案し、採択さ れた、本章では計画の概要と進捗状況を報告する.

PHENIX 計画おいてタングステンのバルク特性に及ぼ す中性子照射効果およびヘリウムガス冷却システムでの熱 伝達に関するデータベースが構築されており、本研究を遂 行し界面に関する知見を加えることで、機器全体としての 評価が可能となる. PFC の伝熱特性や耐久性は「最も弱い 部分で決まる」ことから、バルク特性のみならず界面特性 を評価することは必要不可欠である. なお、本プロジェク ト研究の呼称は FRONTIER (Fusion Research Oriented to Neutron irradiation effects and Tritium behavior at material IntERfaces) 計画とした.

5.2 実施体制

本プロジェクト研究では、以下の研究を行う.また、こ れらの目標を達成するため、表1に示すように4つのタス クグループを構成した.

- (1) プラズマ対向材料-構造材料界面における反応層の発 達過程および中性子照射効果,ならびに反応層が機械 的強度および熱伝達に及ぼす影響(タスク1)
- (2) プラズマ対向材料 構造材料界面を跨ぐトリチウム移 行および中性照射効果(タスク2)
- (3) 中性子照射を受けたプラズマ対向材料の酸素等との化 学反応とそれに伴うトリチウムを含む放射性核種の移 行(タスク2)
- (4) 液体金属ダイバータ材料と構造材料および酸化被膜・ コーティング材料との共存性,ならびに中性子照射効
 果(タスク3)
- (5) タスク1~3で得られる知見およびPHENIX 計画の成
 果等をもとにした工学モデリング(タスク4)

タスク間の関連を図1に示す.それぞれのタスクに日米 より正副タスクコーディネーターが任命されている.プロ ジェクト研究全体の方向性,タスク間の役割分担や予算配 分などは日米の代表およびプログラムコーディネーターか らなる運営委員会で決定する.実際の研究は各タスクの正 副コーディネーターのリーダーシップの下で,日本から米 国あるいは米国から日本へ派遣される研究者によって遂行 される.研究者の派遣については毎年10月頃に核融合科学 研究所より公募がなされ,博士(後期)課程の学生より参

University of Toyama, TOYAMA 930-8555, Japan

corresponding author's e-mail: hatano@ctg.u-toyama.ac.jp

表1 FRONTIER 計画の実施体制.

代表日本:波多野雄治(富山大)プログラムコーディネーター日本:横峯健彦(京都大)米国:D.Clark (USDOE)米国:Y.Katoh (ORNL)			
タスク	課題	タスクコーディネーター	主要施設・設備
タスク1	プラズマ対向材料/構造材料界面の反応ダイナミク スと照射効果	日本:檜木達也(京都大),橋本直幸(北海道大) 米国:L. Garrison, X. Hu, W. Geringer (ORNL)	HFIR, LAMDA
タスク 2	界面を跨ぐトリチウム移行挙動と事故時の反応ダイ ナミクス	日本:大矢恭久(静大),大塚哲平(近畿大) 米国:M. Shimada (INL), R. Kolasinski (SNL-CA)	TPE, STAR
タスク 3	液体ダイバータ概念成立のための中性子照射下固液 界面腐食反応ダイナミクス	日本:近藤正聡(東工大),宮澤順一(NIFS) 米国:B. Pint,J. Jun(ORNL)	HFIR, LAMDA
タスク 4	工学モデリング	日本:横峯健彦(京都大) 米国:C. Kessel(ORNL)	

USDOE: U. S. Department of Energy, ORNL: Oak Ridge National Laboratory, INL: Idaho National Laboratory SNL-CA: Sandia National Laboratories, California

HFIR: High Flux Isotope Reactor (ORNL), LAMDA: Low Activation Materials Development and Analysis laboratory (ORNL) TPE: Tritium Plasma Experiment (INL), STAR: Safety and Tritium Applied Research facility (INL)

図1 FRONTIER 計画におけるタスク構成(ORNL: Oak Ridge National Laboratory, HFIR: High Flux Isotope Reactor, LAMDA: Low Activation Materials Design and Analysis Laboratory, INL: Idaho National Laboratory, TPE: Tritium Plasma Experiment).

加することができる.以下に、各タスクの概要を述べる.

5.3 タスク1 プラズマ対向材料/構造材料界 面の反応ダイナミクスと照射効果

プラズマ対向材料としてのタングステン系材料,低放射 化フェライト鋼や銅合金等の構造材料の照射効果について は、これまでの日米科学技術協力事業をはじめとして多く の研究が行われてきており[1-6],それぞれの材料に対す る基本的な理解が進んでいる.しかしながら,これらの接 合界面に関する理解は不十分である.特に原型炉や実用炉 で想定されるような高フラックスの中性子照射下では、タ ングステンの核変換の影響も懸念される.すなわち,接合 界面では図2に示すように,核変換や照射誘起拡散,原子 の衝突によるミキシング等により,微細組織の変化やそれ に伴う物理特性,強度特性の変化などが想定されるが,こ れらに関する知見は得られていない.また,中性子照射下 においてトリチウムやヘリウムが接合界面に及ぼす影響, 更に照射下での温度勾配の影響等,実環境に近い条件での 材料挙動,接合界面に及ぼす影響は明らかになっていない.

本タスクでは、日米双方で開発されている破壊靭性等を 改善したタングステンを基本とした先進プラズマ対向材料

図2 プラズマ対向材料/構造材料界面の照射効果の模式図.

と、低放射化フェライト鋼 (RAFS)、銅合金等の構造材 料,炭素材料や炭化ケイ素等の低放射化材料を,界面反応 が抑制可能な先進技術で接合したプラズマ対向機器要素材 に対して中性子照射を行う. 中性子照射にはオークリッジ 国立研究所 (ORNL) の研究炉 High Flux Isotope Reactor (HFIR) を用いる. 最先端の材料分析装置を有する ORNL O Low Activation Materials Development and Analysis Laboratory (LAMDA) において, 接合界面に及ぼす中性 子照射の影響を微細組織、強度、伝熱特性等の基本特性変 化の観点から明らかにし、これまでに得られているバルク 照射影響に関する知見と合わせて、プラズマ対向機器に及 ぼす照射効果の理解をめざす.また、中性子照射後の放射 線量が比較的高いタングステン等を対象とするため、微小 試験片評価技術等の照射後試験技術の高度化を図る.これ らの多角的中性子照射試験により,原型炉環境下でプラズ マ対向機器を成立させるための材料工学的知見を得る.

5.4 タスク2 界面を跨ぐトリチウム移行挙動 と事故時の反応ダイナミクス

原型炉プラズマ対向材料は高フラックスの重水素とトリ チウムのプラズマに曝されるとともに、核融合反応により 生成された高エネルギーの中性子やヘリウムの照射を長時 間受ける.PHENIX 計画では、アイダホ国立研究所(INL) の直線型プラズマ装置 Tritium Plasma Experiment (TPE) を用いて、中性子照射されたタングステン系材料を高温で 高フラックスプラズマに曝露し、トリチウム滞留に及ぼす 中性子照射効果を明らかにしてきた.一方で、核融合炉を 設計するためには、異なる材料間を跨るトリチウム移行挙 動の理解および同位体効果を考慮した水素同位体移行評価 が必要不可欠である.例えば、タングステン/低放射化 フェライト鋼接合材においては水素同位体の溶解度の差か ら界面ではトリチウム濃度が特異的に上昇することが予測 されるが(図3),実験的な検証はなされていない.また, これらの異種材料界面におけるトリチウム移行に及ぼす中 性子照射効果についての知見はない.そこで本タスクで は、TPEを用いて中性子照射接合材試料を重水素/トリチ ウムプラズマに曝露し,異種材料界面を跨ぐ水素同位体移 行を調べる.冷却材中へのトリチウム移行等を高精度に評 価するうえでも,界面を跨ぐトリチウム移行ダイナミクス の理解は必要不可欠である.

また,これまでのプラズマ対向材中の水素同位体滞留挙 動評価では,単一の水素同位体を用いる研究がほとんどで あり,水素同位体比を考慮した評価はなされていない.こ れらの因子に加え,ヘリウム影響をも考慮することで,燃 焼プラズマに曝されるプラズマ対向機器中のトリチウム移 行を評価できる.また,この知見は,トリチウム除染技術 検討にも活かすことが可能である.

原型炉の事故時に真空容器中へ大気や水蒸気が進入する と, 運転停止後の崩壊熱により高温状態に保持されたプラ ズマ対向材料との反応が生じ得る. すなわち, 放射化した タングステンや核変換で形成されるレニウムが酸化物とし て昇華すると共に、プラズマ対向機器中からトリチウムが 放出されることで放射性核種が飛散するリスクを想定する 必要がある.トリチウムの放出化学形としては元素状(T2 や DT) と水蒸気状 (DTO や T₂O) が考えられるが, 両者 の比率は真空容器内の酸素ポテンシャルに応じて変化する はずである.そのため、トリチウムがどのような化学形で どの程度飛散するのか予測しておく必要がある. そこで本 タスクでは、日米科学技術協力事業 JUPITER-II 計画[5]の もとでINLに設置された質量移行実験装置および新たに整 備された分析装置を用いて、放射性核種放出速度とその後 の移行挙動を明らかにする、以上の実験を通して、核融合 炉安全設計に必要不可欠な知見を得る.

5.5 タスク3 液体ダイバータ概念成立のため の中性子照射下固液界面反応ダイナミクス の解明

固体ダイバータ方式では、大きな熱負荷や粒子束による プラズマ対向材料表面の損傷が課題である.図4に示す液 体ダイバータ方式では、ダイバータ表面を冷却材液膜で覆 うため、大きな熱負荷や粒子束による材料表面の損傷を防 ぐ事が可能である.さらに、冷却材の種類によっては液膜 表面における粒子吸着・輸送が促進されることにより、ダ イバータ表面付近における粒子リサイクリングが抑制さ れ、プラズマ制御改善も期待できる.このように、液体ダ イバータ概念は、本来のダイバータとしての機能に加え、 システムの長寿命化や高性能化を可能とするものである.

一方で、プラズマと固体材料の間に液体金属が液膜流と して流れる特殊な機構となるため、液体ダイバータでは特 有の工学的課題が発生する.液体ダイバータの冷却材とし て有力であるスズの場合、蒸気圧は十分に低いものの、構 造材料との共存性が課題となる.スズと低放射化フェライ

図3 異種材料界面を跨ぐトリチウム透過の模式図.

図4 液体ダイバータの固液界面周辺における熱・物質フロー.

ト鋼のような鉄系構造材料との腐食は、合金型の腐食であ るということがわかっている[7].スズ中の酸素ポテン シャルは十分高い値に制御できるため、セラミックスコー ティングや酸化被膜による腐食抑制も期待できるはずであ る[8].しかし、中性子照射により被膜組織が劣化するこ とが予想される. すなわち, 核変換元素の結晶粒界への偏 析による粒界腐食の促進,およびボイド等の空隙形成や, スエリングに伴う亀裂発生による液体金属材料の侵入経路 の生成などが懸念される.このような中性子照射下での被 膜の劣化が液体金属環境下の耐食性に対してどのように影 響するかを明らかにする必要がある、つまり、磁場、中性 子,液体金属が複雑に影響し合う環境下における固液界面 腐食反応ダイナミクスを明らかにしなければならない、リ チウムをダイバータ冷却材とする場合は、低放射化フェラ イト鋼との共存性データが既に豊富にある.しかし、スズ やスズ-リチウム合金の場合も共通であるが、磁場を横切 る際の電磁気力による圧力損失発生が課題であるため、構 造材との電気的絶縁のためのセラミックスコーティングや 酸化被膜の技術は必須である. すなわち, リチウムの場合 でも中性子環境下におけるセラミックスコーティングや酸 化被膜の劣化と、それが電気的絶縁性および耐食性に与え る影響をやはり明らかにする必要がある.

このような背景より、本タスクでは以下の課題に取り組 む.

- (1)液体ダイバータ材料の有力な候補であるスズやリチウム、スズ-リチウム合金と構造材料との共存性について、温度条件、流動条件、磁場の影響を明らかにする.
- (2)液体金属の材料共存性の改善策として想定されるセラ ミックスコーティングや酸化被膜の有効性を明らかに する.

(3) 中性子照射によるセラミックスコーティングや酸化被 膜の劣化機構,および液体ダイバータ環境下における 耐食性への影響を明らかにする.

5.6 タスク4 工学モデリング

界面ダイナミクスに着目した各タスクの成果を横断的に 集約し,これらをプラズマ対向機器内の現象として有機的 に結び付け,プラズマ対向機器システムに対応できる工学 モデルへ昇華させる.すなわち,ガス冷却固体ダイバータ および液体金属ダイバータの成立性について工学的観点か ら相互比較を行う.米国での大規模な実験的研究は実施せ ず,ワークショップにおける議論に加え,必要に応じて人 物交流にて実施できる範囲の実験を行うことで,研究を進 める.

5.7 終わりに

本プロジェクト研究では2期に分けて中性子照射実験を 実施する予定である.1期目の照射マトリックス(試料リ スト)はほぼ完成しており,現在試料の準備を進めてい る.2期目の照射に向けては,温度勾配下での照射や水素 同位体・ヘリウムの同時照射,液体金属 in-pile 腐食試験 等,より実機に近い環境での中性子照射を実現するための 照射キャプセル設計に関する議論を進めている.また,並 行して照射後試験技術の開発と,非照射材を用いた対照実 験を実施している.本章を読んで「参加してみたい」と 思っていただけたら、大変幸いである.もし参加のご希望 があれば、著者らにご一報いただきたい.また、中間レ ビューも実施する予定なので、読者からのフィードバック もぜひ頂戴したい.

謝 辞

共に FRONITER 計画を立案し研究を進めて下さってい る米国研究者,特に D. Clark 氏 (エネルギー省),Y. Katoh 博士,L. Garrison博士,X. Hu博士,J. W Geringer 氏, B. Pint 博士,J. Jun 博士 (ORNL), M. Shimada 博士 (INL), R. Kolasinski 博士 (SNL) に心より謝意を表します.

参 考 文 献

- [1] M. Rieth et al., J. Nucl. Mater. 519, 334 (2019).
- [2] C. Cabet et al., J. Nucl. Mater. 523, 510 (2019).
- [3] G.S. Was et al., J. Nucl. Mater. 527, 151837 (2019).
- [4] 日米科学技術協力事業核融合分野30周年記念報告書, http://www.nifs.ac.jp/collaboration/Japan-US/JPN_US _30th_Report_J.pdf
- [5] 阿部勝憲他:プラズマ・核融合学会誌 85,247 (2009).
- [6] 奥野健二 他:プラズマ・核融合学会誌 89,705 (2013).
- [7] M. Kondo et al., Fusion Eng. Des. 98-99, 2003 (2015).
- [8] A. Heinzel *et al.*, Mater. Corros. **68**, 831 (2017).