Commentary
On the Theory of Explosive Magnetic Reconnection in a Collisionless Plasma HIROTA Makoto 861

Special Topic Articles
Issues on Research and Development of Divertor towards DEMO - Current Status and Prospects -
1. Introduction ... UEDA Yoshio 868
2. Present Status of DEMO Divertor Concept in Japan, and Issues of the Development
... ASAKURA Nobuyuki and HOSHINO Kazuo 870
3. Divertor Experiment and Modeling on Detached Plasma and Power/Particle Handling
3.1 Detached Divertor Plasma Experiment .. OHNO Noriyasu 877
3.2 Divertor Plasma Modeling .. HOSHINO Kazuo 882
4. Current Activities and R&D Status on Divertor for ITER and DEMO
... SUZUKI Satoshi and ASAKURA Nobuyuki 886
5. Current Status of Irradiation Effects Research and Development
 on Plasma Facing Materials and Structural Materials of Divertor
5.1 Tungsten .. HASEGAWA Akira 891
5.2 Cu Alloys and Ferritic Steel .. HAMAGUCHI Dai and TANIGAWA Hiroyasu 897
6. Final Remark .. UEDA Yoshio 902

Lecture Note
Mathematics for Image Reconstruction and Pattern Recognition
4. Laplacian Eigenfunctions and Their Application to Image Data Analysis .. SAITO Naoki 904
5. Prospect for New Diagnostics
5.1 Electron Density Fluctuation Measurements with a Wavefront Sensor
.. AKIYAMA Tsuyoshi, HAYANO Yutaka, HATTORI Masayuki and TAMADA Yosuke 912
5.2 Spatial Structure Measurement by Hadamard Transform Optics .. ARAKAWA Hiroyuki 917

PFR Abstracts .. 923
Information ... 925
Plasma & Fusion Calendar ... 928
Announcement ... 930
Vol. 92 Contents ... 937

Cover
The spatiotemporal structure of density fluctuations measured by Beam Emission Spectroscopy with slit-shaped sightlines in the Large Helical Device is presented. Figures (a) and (b) are the cross-correlation functions of BES signals with a magnetic probe signal as a reference in the poloidal direction and the radial direction, respectively. Poloidal and radial spatial distributions of the phase with respect to time are shown in Fig. (c) and Fig. (d), respectively. The density fluctuation measured at the outboard side on the midplane in the high beta plasma was found to have phase velocity in the direction of E x B drift and finite phase delay in the radial direction.