Commentary

Microwave Rocket: Its Development Status and Future ... KOMURASAKI Kimiya and FUKUNARI Masafumi 323

Special Topic Articles

Applications of Data Mining to Fusion Plasma Studies

1. Introduction .. YAMAMOTO Satoshi 332
2. The Element of Data Mining for Big Data ... MAEDA Shin-ichi 334
3. Examples of Data Mining Applications in Plasma Experiments
 3.1 Fluctuation Analysis Using Clustering Technique ... BLACKWELL Boyd D, PRETTY David G. and HASKEY Shaun R. 342
 3.2 Dissimilarity of Time Series Data for Data Mining .. HOCHIN Teruhisa, NAKANISHI Hideya and NOMIYA Hiroki 347
 3.3 A New Method for Time Series Analysis Using Network Visualization TANIZAWA Toshihiro and NAKAMURA Tomomichi 352
4. Practical Examples of Data Mining by Analysis Tools
 4.1 Blackwell Boyd D, Pretty David G. and Haskey Shaun R. 357
5. Summary .. YAMAMOTO Satoshi 363

Lecture Note

Introduction to High Energy Density Plasma Measurement

6. Plasma Diagnostics for Inertial Confinement Fusion PlasmaSHIRAGA Hiroyuki 365
7. Measurement of the Relativistic Plasma ... NISHIUCHI Mamiko 372
8. Summary .. SHIGEMORI Keisuke 377

Front Runner

Recent Progress in Study of Dusty Plasmas under Microgravity

“Current Status of Researches Based on Measuring Plasma Parameters” TAKAHASHI Kazuo 378

Mourning ... 383

PFR Abstracts ... 384

Information ... 386

Plasma & Fusion Calendar ... 389

Announcement ... 391

Cover

Cross-sectional view of the in-vessel cryo-sorption pump installed in the Large Helical Device (LHD). Particles neutralized on the divertor plates pass through the water-cooled louver blind and then through the liquid nitrogen-cooled chevron-type shield. They are finally absorbed in the activated carbon, which is bonded on the cryo-panel (≈10 K) by the newly developed technique without any organic adhesives. (Takanori MURASE et al., Plasma and Fusion Research Vol. 11, 1205030 (2016) http://www.jspfor.jp/PFR/)