

4. 環境分析のためのトリチウム電解濃縮

4. Electrolytic Enrichment Technique of Tritium in Water for Environmental Analysis

柿内秀樹

KAKIUCHI Hideki 公益財団法人環境科学技術研究所環境影響研究部 (原稿受付:2015年8月7日)

トリチウムは低エネルギーのβ線を放出する水素の放射性同位体であり,液体シンチレーションカウンター で測定を行う.しかし降水や海水等の水試料は、トリチウム濃度が低く、そのままでは測定できないため、水を 電気分解してトリチウムの濃縮を行う.環境試料中トリチウムの電解濃縮の手法について解説する.

Keywords:

environmental tritium, liquid scintillation counting (LSC), electrolytic enrichment

4.1 はじめに

環境中のトリチウムには天然に生成するトリチウムと人 工的に生成したトリチウムが存在する. 天然に生成するト リチウムは大気上層において、宇宙線起源の陽子や中性子 と大気中の窒素原子や酸素原子との核反応により、常に生 成されている[1]. そのうち99%は水として空気中の水蒸 気,雨水,海水中に存在して自然界を循環している.この ように環境中のトリチウム濃度は放射壊変による減衰と, 大気上層からの供給がつりあって定常状態となっていた. しかし1950-60年代に行われた大気圏核実験により降水中 トリチウム濃度が増加し、1963~1964年のピーク時には定 常レベルの100倍を越える値が観測された[2]. 1963年の核 実験禁止条約以降、降水中トリチウム濃度は年々減少し た. 核実験由来のトリチウムは、水循環に伴い多くは海に 移行するが、海には大量の水が存在するので、核実験由来 のトリチウムが海に移行しても濃度の増加はわずかであ る. またトリチウムの壊変による減衰と海の希釈効果のた め現在の日本における降水中トリチウム濃度はほぼ定常状 態となり年平均で約 0.4 Bq L⁻¹まで下がっている[2]. -方, 地下水に涵養されたトリチウムはその滞留時間がトリ チウムの半減期よりきわめて長い場合、放射壊変によりト リチウムはなくなってしまう. 大気中核実験が開始される 以前の天然レベルの降水のトリチウム濃度,例えば日本に おける環境トリチウム濃度は、1953年に神戸の降水試料に おいて 0.77 Bq L⁻¹ との報告値がある[3]. この当時の降水 が地下水として涵養された場合、その濃度はトリチウムの 半減期にしたがって減衰し、2015年には約0.02 Bg L⁻¹と見 積もられる.この核実験開始以前の降水が涵養された地下 水のトリチウム濃度を定量するにはこの値程度まで測定で

きる必要がある.

4.2 トリチウム測定

トリチウムは低エネルギーのβ線を放出する核種である ため、液体シンチレーションカウンターで測定を行う.液 体シンチレーションカウンターは、蛍光試薬と界面活性剤 を溶かした有機溶媒(液体シンチレータ)に試料水を混合 し、放射線の作用で発生した蛍光を光電子増倍管で計測す るものである.

トリチウム濃度を測定する対象として河川水,湖水,雨水,海水等があり,これらの水試料に溶存している不純物 を蒸留して除き,液体シンチレータと混合後測定を行う.

環境試料を測定するには低バックグラウンドタイプの液 体シンチレーションカウンターを用いるが,代表的な機種 に,Quantulus 1220 (PerkinElmer)や LSC-LB7 (Hitachi-Aloka)等が挙げられる.Quantulus 1220では容量として 20 mLの測定容器まで使用でき,LSC-LB7では最大145 mL 容量の容器 (Polyvial 145 SLD, Zinsser Analytic)を用いた 測定が可能である.

Quantulus 1220の検出下限値は水試料10 mLを1:1の 割合で液体シンチレータと混合して,1000分計測した場合 0.6 Bq L⁻¹であり,同様にLSC-LB7では供試料50 mL,計 測時間1000分に対し0.3 Bq L⁻¹と報告がある[2].これらの 濃度レベルは原子力施設稼働に伴う環境影響を把握するに は十分な感度であるが,地下水,沿岸海水,及び夏季の降 水試料等の低トリチウム濃度を示す試料では検出下限を下 回る[4,5].そのような低トリチウム濃度を定量するため には,トリチウムの濃縮操作が必要であり,そのために行 う電解濃縮について以下に紹介する.

Department of Radioecology, Institute for Environmental Science, AOMORI 039-3212, Japan

author's e-mail: ckhsd@ies.or.jp

4.3 トリチウムを含む水の電気分解

4.3.1 原理

図1に電極上での水素発生のメカニズムを示す[6].電 極表面に付いた水素イオン(オキソニウムイオン: H_3O^+) が電子を受けて吸着水素原子 H_{ad} になる(Volmer 反応).

 $H_3O^+ + e^- \rightarrow H_{ad} + H_2O \tag{1}$

この H_{ad} が結合して水素分子になる.その経路は次の2 つが考えられている.ひとつは別の H₃O⁺が一電子還元を 受けると同時に,先に吸着していたH_{ad}と結合する経路(b) である (Heyrovsky反応).もうひとつは2個のH_{ad}が電極 表面で結合する経路(b')である (Tafel反応).それぞれ Volmer-Heyrovsky反応 (V-H反応),Volmer-Tafel反応 (V-T反応)と呼ばれる.Tafel反応は近接する二原子水素 化物間の反応である同位体効果が小さく,経路(a)→(b')の V-T反応ではTafel反応が支配的となる[7].これに対し Heyrovsky反応では同位体効果があり,経路(a)→(b)の V-H反応ではそれぞれの効果が相乗されると考えられる [7].どちらの経路になるかは電極素材と水素の結合の強 さで変わると考えられている.

水を電気分解すると以上のような反応を通して水素ガス と酸素ガスが生成されるが、水素ガスになる際の反応速度 はH⁽¹H)>D⁽²H)>T⁽³H)の順に、軽い水素ほど早く電気 分解が進み、試料水に残存する試料中に含まれるトリチウ ムの量は多くなっていく.すなわち水を電気分解すると、 トリチウム水は分解されにくいので水中に濃縮される.こ の現象を利用したものが電気濃縮法である.

水を電気分解したときの軽水素 Hの反応速度定数 $k_{\rm H}$ と 重水素 Dの反応速度定数 $k_{\rm D}$ の比 $k_{\rm H}/k_{\rm D}$,およびトリチウム Tの反応速度定数 $k_{\rm T}$ との比 $k_{\rm H}/k_{\rm T}$ をその同位体の分離係数 α および β と呼び,この値を用いて電解前のトリチウム濃 度を求めることができる[8].

図1 水素発生の反応経路(a)→(b)または(a)→(b')が起こる [6].

$$(V_{f}/V_{i}) = (D_{f}V_{f}/D_{i}V_{i})^{\alpha}$$
 (2)
 V_{i} : 濃縮前の試料水の体積
 D_{i} : 濃縮前の試料水の D 濃度
 D_{f} : 濃縮後の試料水の D 濃度
 α : D の分離係数
D 濃縮率 $Z_{D} = D_{f}/D_{i}$ (3)
 $= (V_{i}/V_{f})^{(1-1/\alpha)}$ (4)
 $(V_{f}/V_{i}) = (T_{f}V_{f}/T_{i}V_{i})^{\beta}$ (5)
 T_{i} : 濃縮後の試料水の T 濃度
 T_{f} : 濃縮後の試料水の T 濃度

$$\beta$$
:Tの分離係数
T 濃縮率 $Z_{T} = T_{i}/T_{i}$ (6)

$$= (V_{i}/V_{f})^{(1-1/\beta)}$$
(7)

$$\Gamma 残留率 R = T_f V_f / T_i V_i \tag{8}$$

電解時の試料水中重水素とトリチウムの濃縮率には相関 があり、各濃縮率の対数比rは一定となる[7,8].

$$r = \ln(T_{\rm f}/T_{\rm i}) / \ln(D_{\rm f}/D_{\rm i})$$

$$r : 定数$$
(9)

したがって,安定同位体比質量分析計で電解前後のD を測定し,この関係から電解前のT(³H)濃度を求めること ができる.

4.3.2 アルカリ電解濃縮

アルカリ溶液の電気分解システムを図2に示す.環境試 料は蒸留して不純物除去後,過酸化ナトリウム(Na₂O₂)を 加えて水酸化ナトリウム溶液とする.この溶液をガラス製 の電解セルに入れて電気分解を行う.この時-極に高い分 離係数を与える素材を使用することで,より効率的にトリ チウム濃縮を行うことができる.この時電極には陰極 (-極)に鉄やニッケル,陽極(+極)にはニッケルが使用 される[7-10].また電気分解の温度が低いほど高い分離係

図2 アルカリ電解濃縮システムの模式図.

数を示すので、恒温槽で0~3℃に冷却して電気分解が行われる[7-10].またこの冷却により蒸発の防止も行われる.

電解セルの構造は研究者により様々であるが,初期試料 投入量を通常200 mLから1Lとしているものが多い[7-14].アルカリ電解は,電解セルを直列に接続し,10~20本 のセルを同時に操作する.一般に収率をモニターするため 2本のセルに既知濃度のトリチウムをスパイクし,別の2 本はコントロールとしてトリチウムの含まれていない水を 電解する.この時得られる濃縮率で試料中トリチウム濃度 の算出を行う.

電解が進むに連れて溶液体積が減少し、トリチウムとと もに水酸化ナトリウムの濃縮も進む.体積の減少に反比例 して電解質である水酸化ナトリウム濃度が増加するため、 電解濃縮前後の試料体積比で10~20倍が濃縮の限界とな る.液体シンチレーションカウンターで測定するには溶液 を中和して蒸留精製する必要がある.この中和蒸留には二 酸化炭素を通気して行う方法[15,16]と、塩化鉛を加えて 蒸留する方法がある[4,12].この電解濃縮により液体シン チレーションカウンターを単独で用いた場合に対しての検 出下限値を10-30倍下げることができる.

アルカリ電解では電気分解によって水素ガスと酸素ガス が同時に発生するため、爆発の危険性が伴う.そのため、 このシステムを運用するには水素、酸素ガスの排気システ ムや水素ガス探知機等の安全装置を備えなければならな い.また電極に鉄やニッケルを使用するため、電解操作後 に洗浄の必要がある.電極の洗浄にはリン酸溶液や希塩酸 を使用して、電解中に生じた水酸化物や酸化物を取り除 き、洗浄後速やかに乾燥させる必要がある.

4.3.3 SPE 電解濃縮

水を電気分解するには,通常硫酸や水酸化ナトリウムな どの酸. アルカリを電解質として加える必要があっ た. 1970年代初期に GE 社 (General Electric) が開発した SPE電解により、純水の電解ができるようになった [17]. SPE とは, Solid Polymer Electrolyte (固体高分子電 解質)のことでイオン交換膜の一種である. SPE 電解は固 体高分子電解質であるイオン交換膜を電解質として水を電 解する方法である.図3にSPE 電解システムを示す.この 電解には膜を通って拡散する水素および酸素の量を抑制す るため膜厚 0.1~0.3 mm の膜が使用される. この SPE 膜と してフッ素樹脂系のスルフォン酸(-SO₃H)型の強酸性陽 イオン交換膜,製品としてはデュポン社(Du Pont)のナ フィオン (Nafion) がよく知られている. 通常この Nafion 膜の両面に繊維状の電極が直接接合されている. これらの 電極のうち、-極にはステンレス、ニッケル及び白金等が 使用され、+極にはチタンに酸化イリジウムを担持させた 不溶性電極などが用いられる.

純水は不良導体であるが、両極間に電圧をかけると、ま ず膜中のスルフォン酸基(-SO₃H)のH⁺が陰極に移動し、 それを補うようにして陽極で発生したH⁺が次々と流れ電 流が流れる.陰極に移動したH⁺は電荷を失い(10)式のよ うに水素を発生する.+極では(11)式のように水が電解さ

図3 SPE 電解濃縮システムの模式図 (*SPE:固体高分子電解質膜).

れて酸素を発生し,生じたH⁺は膜中を移動して-極に移 動し,結果として(12)式のように水素と酸素が発生する.

- $-\overline{\mathbf{w}}: 2\mathbf{H}^{+} + 2\mathbf{e}^{-} \rightarrow \mathbf{H}_{2} \uparrow$ (10)
- $+ \overline{\mathbb{M}} : \mathrm{H}_2\mathrm{O} \rightarrow 1 / 2 \mathrm{O}_2 \uparrow + 2 \mathrm{H}^+ + 2 \mathrm{e}^-$ (11)
- 全反応:H₂O→1 / 2 O₂ ↑ + H₂ ↑ (12)

純水に浸して電圧をかけると電解が進み,ガスが金属繊 維のすき間から発生する. - 極では水素ガスが発生し, + 極では酸素ガスが発生する. この時,それぞれのガスは SPE 膜を隔てて発生するので,ガスが混合して爆発する危 険性が少ない. 従来のトリチウム電解濃縮法であるアルカ リ溶液による電解ではトリチウム濃縮とともに電解質溶液 も高濃度となり,濃縮倍率を上げることが困難であった. SPE 電解はこれらの課題を解決したものである.

電解装置が同一ならば分離係数 β は一定値を取るので初 期試料体積 V_i ,最終試料体積 V_f を一定にすれば T_i の値に寄 らず, Z_T は一定値になる.したがってあらかじめ濃度既知 の試料水を調製し, $Z_T = T_i/T_i$ が一定になることを確認し, この濃縮倍率 Z_T を装置定数として用いることができる.こ のシステムはペルメレック電極株式会社からトリピュアと して製品化されている.このトリピュアは出てくるガス中 の水蒸気を冷却して蒸発による損失を防ぎ,水位面セン サーを取り付けて一定水位で電解を停止することで,一定 体積の濃縮試料水が得られる仕様になっており,その結 果,再現性よく V_f を一定にできる[18].

4.3.4 それぞれの電解濃縮の特徴

表1にアルカリ電解濃縮とSPE電解濃縮の分離係数β を示し[8-10,19-23],**表2**に検出下限値を示す.アルカリ 電解では-極素材に鉄やニッケルが用いられ,鉄を用いた 方がβの値が大きく,トリチウムの濃縮操作に有利であ る.しかしニッケルと比較して鉄は錆びやすく,取り扱い が煩雑である.SPE電解に用いる膜はスルフォ基を有して いるため,電解時+極上で強い酸化力を示し,チタンに酸 化イリジウムを担持させた不溶性電極などを使用する必要 がある.またいずれの電解濃縮でも低温で操作するほどβ

電解方式	- 極	+極	温度(℃)	β	
アルカリ	軟鉄	ニッケル	0.5	32	Roy (1960)
			22.5	25	
			40	20	
			60	15	
	ニッケル	ニッケル	0	8-11	Inoue (1987)
	軟鉄	ニッケル		25-46	
	ニッケル	ニッケル	2	14	Satake (1991)
	軟鉄	ニッケル	2	26	
SPE	ニッケル	ニッケル	5	15	上松(1996)
	白金	白金		6	
	白金	白金	2	12	Muranaka (2005)
	sus316	DSA*	20	11	Ogata (2005)
	ニッケル	DSA		12	
	sus316	DSA	_**	4	Sugihara (2008)
	白金	IrO2/Ti	_**	46	Soreefan (2009)

表1 電解濃縮の分離係数 β [8-10, 19-23].

*不溶性電極 **未測定

表2 種々の電解条件における検出下限値.

	Quantulus 1220					LSC-LB7			
供試料量 (mL)	10	200	200	200	500	50	800	800	1500
電解濃縮	なし	あり	あり	あり	あり	なし	あり	あり	あり
濃縮後試料量 (mL)		14	14	14	14		56	56	56
体積濃縮率		14.3	14.3	14.3	35.7		14.3	14.3	26.8
分離係数 β		10	20	40	20		4	20	4
濃縮率 Z _T		10.9	12.5	13.4	29.9		7.3	12.5	11.8
T 残留率		0.77	0.88	0.94	0.84		0.51	0.88	0.44
測定時間 (分)		1000	1000	1000	1000	1000	1000	1000	1000
検出下限値 (Bq L ⁻¹)	0.6	0.05	0.05	0.04	0.02	0.3	0.04	0.02	0.03

値が大きいため、効率よくトリチウムを濃縮するためには 冷却して行うことが望ましいが、ペルメレック電極のトリ ピュア等によるSPE電解では空冷により電極部分を冷却す るため低温での操作に限界がある.それぞれの特徴を以下 に示す.

アルカリ電解

長所

- 一度に多試料の処理ができる
- ・トリチウムの濃縮率が高く、少ない試料量でも精度 よく分析できる

短所

- ・爆発の危険性がある
- ・電流密度は小さく電解に時間を要する
- ・試料水に過酸化ナトリウムを加えるため、中和して 蒸留が必要
- ・電解質を加えるため濃縮倍率に制限がある
- ・電解終了後の電極の洗浄が必要

SPE 電解

長所

・爆発の危険性がない

- ・操作が楽である
- ・試料水に電解質等の試薬を加えずに済む
- ・濃縮倍率に制限がない
- ・電流密度が大きく電解に時間がかからない
- ・電解終了後の電極の洗浄が不要

短所

- ・一度に1試料ずつしか処理できない
- ・トリチウムの濃縮率があまり高くない
- ・温度コントロールが困難

4.4 水試料以外への適用

環境中に存在する水は光合成を通じて有機物へ変換される.この有機物として存在するトリチウムは有機結合型ト リチウム (Organically Bounded Tritium; OBT)と称する.

この OBT を人が摂取した場合,水に比べて体内の臓器 等に取り込まれやすく、一度取り込まれると体内から出に くい性質があることが知られ、OBTの線量換算係数はトリ チウム水の約2.3倍と見積もられている[24]. このOBT を定量するには、まず組織自由水トリチウム (Free Water Tritium: FWT)を真空乾燥等により取り除く. そして得ら れた乾燥試料を燃焼して水にする必要がある.一般的に は、石英管中に試料を入れて酸素を流しながら燃焼させる [25,26]. この燃焼法の難しさは、完全に試料を燃焼させ、 さらに生成した水 (燃焼水)をすべて回収しなければ,正 確に OBT 濃度を求められないことである. また燃焼水に 有機物が含まれるために過マンガン酸カリウム、過酸化ナ トリウムを加えて、蒸留し、その中に含まれる有機物を分 解除去して精製する必要がある.分解除去が不十分だと不 純物によるケミカルルミネッセンスや不純物中の炭素-14 (¹⁴C) による計数値の増加が起こる. この OBT 濃度は環境 に存在する水のトリチウム濃度レベルを反映するので、定 量的な議論をするためには燃焼水について電解濃縮をする 必要がある. 有機物を燃焼して得られる燃焼水の収率は, 有機物の種類によっても異なるが、有機物の乾燥重量に対 して50~60%である.そのため比較的少ない試料量で濃縮 できるのはアルカリ電解であり、それでも供試料量として 水 200 mL が必要である[25, 27]. これは乾燥試料として約 400g相当であり、燃焼するには複数回の燃焼処理が必要 である.

OBT 分析をするために, 燃焼水を得て液体シンチレー ションカウンターで測定する代わりに, トリチウムの壊変 で生成した³He を質量分析法により測定, 定量する方法が ある[25,28]. 質量分析法による OBT 濃度の定量は感度が 高く, 乾燥試料 5gを2ヶ月間貯蔵して³He を測定した場 合, 乾燥試料 400gを燃焼してアルカリ電解濃縮をした時 の検出下限値と同程度である[25]. 前述の通り, 電解によ るトリチウム濃縮をしようとすれば, より多くの燃焼水が 必要となるため, 燃焼水を電解濃縮してトリチウム濃度を

29

測定することは現在行われていない.

4.5 おわりに

従来トリチウムの電解濃縮はアルカリ電解によるもので あった.近年 SPE 電解によるトリチウムの濃縮法の普及に より,操作が簡便になった.しかし従来のアルカリ電解と 比較して,温度コントロールが難しく,かつ電極素材とし て使えるものが限定的であるため濃縮率に限界があり,精 度よくトリチウムを測定するには供試料量を多くする必要 がある.今後 SPE 電解法については装置の構造を改善して 試料水の温度コントロールをすることで,トリチウムの濃 縮率を向上させることが可能だと考えられる.

参考文献

- [1] UNSCEAR, *Sources and Effects of Ionizing Radiation*, Part 1 vol. 1 (United Nations Publications, 2000).
- [2] 柿内秀樹,赤田尚史:プラズマ・核融合学会誌 89,645 (2013).
- [3] H.v. Buttlar and W.F. Libby, J. Inorg. Nucl. Chem. 1, 75 (1955).
- [4] H. Kakiuchi et al., J. Radioanal. Nucl. Ch. 239, 523 (1999).
- [5] P.P. Povinec *et al.*, Biogeosciences Discuss. 10, 5481 (2013).
- [6]渡辺正,中林誠一郎:電子移動の化学(朝倉書店, 1996).
- [7] C.B. Taylor, Appl. Radiat. Isot. 45, 683 (1994).
- [8] L.P. Roy, Canadian J. Chemistry 40, 1452 (1962).
- [9] Y. Inoue and K. Tanaka-Miyamoto, Int. J. Radiation Applications and Instrumentation. Part A. Appl. Radiat. Isot. 38, 1013 (1987).

- [10] H. Satake and S. Takeuchi, Geochemical J. 25, 429 (1991).
- [11] K. Kitaoka, Radioisotopes 30, 247 (1981).
- [12] T. Kaji and Y. Takashima, Radioisotopes 39, 106 (1990).
- [13] M. Gröning and K. Rozanski, Accred. Qual. Assur. 8, 359 (2003).
- [14] K. Rozanski and M. Gröning, "Tritium assay in water samples using electrolytic enrichment and liquid scintillation spectrometry", IAEA-TECDOC-1401, 195 (2004).
- [15] M. Gröning et al., Isot. Environ. Healt. S. 45, 118 (2009).
- [16] U. Morgenstern and C. B. Taylor, Isot. Environ. Healt. S. 45, 96 (2009).
- [17] J.H. Russell *et al.*, American Chemical Society Division of Fuel Chemistry Preprints 18, 24 (1973).
- [18] M. Saito, J. Radioanal. Nucl. Ch. 275, 407 (2008).
- [19] 上松和義 他: Radioisotopes 45, 375 (1996).
- [20] T. Muranaka et al., Fusion Sci. Technol. 48, 516 (2005).
- [21] Y. Ogata et al., Fusion Sci. Technol. 8, 136 (2005).
- [22] S. Sugihara et al., Fusion Sci. Technol. 54, 289 (2008).
- [23] A.M. Soreefan and T. A. DeVol, J. Radioanal. Nucl. Ch. 282, 511 (2009).
- [24] ICRP, "Age-dependent Doses to Members of the Public from Intake of Radionuclides": Part 5, Compilation of Ingestion and Inhalation Dose Coefficients (Pergamon Press, Oxford 1995).
- [25] H. Kakiuchi et al., Fusion Sci. Technol. 60, 1256 (2011).
- [26] T. Tamari et al., Fusion Sci. Technol. 60, 1252 (2011).
- [27] M.P. Neary, *Advances in Liquid Scintillation Spectrometry* (Karlsruhe, 2002).
- [28] P. Jean-Baptiste *et al.*, J. Environ. Radioactiv. 101, 185 (2010).