講座 核融合構造材料における機械的特性の評価法とデータ解析

3. 疲労試験の試験手法とデータ解析の実例

3. Methods and Data Analysis Example of Fatigue Tests

野上修平

NOGAMI Shuhei 東北大学大学院工学研究科量子エネルギー工学専攻 (原稿受付:2015年4月14日)

核融合炉の設計・運用においては、装置の起動停止やプラズマの繰返し照射などにより疲労損傷が導入され ることが想定されるため、疲労寿命を精度よく評価することが重要である.疲労とは、一回の負荷では破断に至 らない程度の荷重が材料に繰返し負荷されることにより、材料内に微小なき裂が発生し、それが成長して破断に 至る損傷である.疲労寿命は、負荷された応力・ひずみ振幅と破損繰返し数の関係を規格試験片による疲労試験 によりデータベース化し、それと実構造物における発生応力・ひずみを比較することにより、一般に評価される. 本章では、主に低サイクル疲労を対象に、標準的な試験法を解説しながら、疲労試験の結果として求められる疲 労限度や寿命予測式等について解説する.試験法の解説においては、試験片の微小化などの核融合炉特有の課題 と展望についても記述する.

Keywords:

fatigue, fatigue life, fatigue limit, S-N curve, ε -N curve, hysteresis curve, Coffin-Manson's law, Manson's universal slope method, small specimen test technique

3.1 疲労現象

3.1.1 疲労現象とその重要性

全ての材料は、それぞれ特有の強度(強さ)を有してお り、強度以上の応力(負荷された荷重を、それを負担する 面積で除した値)が負荷されたとき、一般的に材料は破壊 する.しかし、この強度より小さな応力でも、それを繰返 し負荷した場合に材料が破壊することがある.このような 現象を疲労(fatigue)と呼ぶ.

日本機械学会の技術資料によれば、構造物の破損・破壊 の多くが、疲労により引き起こされている[1].古くは鉄 道車両の車軸の折損事故や、1950年代に起こったジェット 旅客機コメット機の墜落事故、最近では1990年代後半に起 こった高速増殖炉「もんじゅ」のナトリウム漏えい事故や、 HII ロケット打ち上げ失敗などにおいて、機器の疲労破壊 が不具合の原因の一つと指摘されている[2].

このように、古くから構造物の健全性を判断する上で重 要とされている疲労現象であるが、その使用条件が科学技 術の発達とともに複雑かつ過酷になっていることと、疲労 現象そのものの潜在的な複雑さから、その設計や運用にお いて今なお最も重視すべき材料の損傷・劣化事象の一つで あることに変わりはない.よって、今後ますます開発が進 展し、構造強度に関する健全性の評価や、機器としての長 寿命化などが厳しく要求されることになる核融合炉におい ても、疲労損傷の理解と、設計および保全への反映は不可 欠であり、まずは、開発に関わる全ての研究者、技術者が その重要性を理解することが望まれる.本報では,その理 解の一助として,一般的な疲労試験の試験手法とデータ解 析の実例,核融合炉材料の評価における課題などについて 概説する.

3.1.2 疲労寿命とそれに至る損傷過程

構造物の「寿命」を決定する因子は様々あるが、疲労損 傷の観点からは、「疲労寿命 (fatigue life), N_f」として取 り扱われる.疲労寿命は、構造物の中で疲労損傷を受ける 部位にいわゆる規格試験片を想定し、その試験片が実構造 物と同等の繰返し負荷を受け破断した際の繰返し数、つま り, 試験片の「破損繰返し数 (number of cycles to failure) で定義されるのが一般的である[3].しかし、疲労損傷過 程においては、この寿命に至るまでに様々な現象が生じて おり、大きくは、き裂が発生するまでの過程と、発生した き裂が進展する過程に分けられる[3].よって、疲労寿命 はそれらの過程を包含した巨視き裂の発生寿命ともいえる [3]. したがって、材料や構造による疲労寿命の相違の理 解や、それらの長寿命化を図るためには、疲労寿命のみな らず、き裂が発生するまでの過程と発生したき裂が進展す る過程それぞれの詳細なメカニズムを理解することが重要 である.図1は、Forsythによって示された高力アルミニ ウム合金における疲労損傷過程の模式図である[4].初期 のすべり帯発生,入込みや突出しなどの表面形状変化,き 裂の発生から進展への遷移、巨視き裂進展に伴う断面減少 による静的最終破断と,疲労損傷過程が詳細に示されてお

Tohoku University, Sendai, MIYAGI 980-8579, Japan

author's e-mail: shuhei.nogami@gse.tohoku.ac.jp

図1 高力アルミニウム合金の疲労損傷過程の模式図[4].

り,現状でも,一般的な金属の疲労損傷過程は,この理解 が広く適用されている[3].

3.1.3 S-N 曲線と疲労限度および疲労の分類

疲労寿命とそれに至る損傷過程の理解のため,材料の疲 労試験が行われる.基本的な疲労試験では,図2のように, 繰返し応力を規格試験片に負荷し,破損繰返し数(あるい は疲労寿命)を求めるのが一般的である[5].疲労試験の試 験条件は,1サイクル中の応力の最大値 σ_{max} ,最小値 σ_{min} ,応力振幅 σ_a (=($\sigma_{max} - \sigma_{min}$)/2)または応力範囲 $\Delta\sigma$ (= $\sigma_{max} - \sigma_{min}$),平均応力 σ_m (=($\sigma_{max} + \sigma_{min}$)/2)および応 力比R (= $\sigma_{min}/\sigma_{max}$)で特徴づけられる[5].疲労試験の結 果は,図3のように,縦軸に σ_a または $\Delta\sigma$ の対数を,横軸 に N_f の対数をとって表すことが多く,これをS-N曲線とい う[5].

一般的な材料では、負荷する応力が小さくなるほど疲労 寿命は長くなるため、S-N曲線は右肩下がりの曲線となる [3]. しかし、一部の材料では、ある一定の負荷応力を下回 ると繰返し数によらず材料は破断しなくなる[3]. つまり, 図3に示すように、S-N曲線は屈曲し、それ以降は横軸に 対して水平な線となる.この破断しなくなる最大の応力を 「疲労限度 (fatigue limit)」と呼ぶ[3].構造物の設計にお いては、発生応力を疲労限度以下にすることで、疲労の観 点での構造信頼性が担保されるという考え方がある. ただ し、疲労限度以下においても疲労損傷の発端であるすべり 帯や、場合によっては微小き裂も発生していることが知ら れていることから,疲労限度は微小き裂発生のしきい応力 ではなく、微小き裂進展のしきい応力と理解するほうが保 守的かつ安全側であると考えられる[3]. なお,次節でも 触れるが、疲労試験は負荷方式に応じて複数の種類があ り、一般的に疲労限度の値はこの負荷方式に依存すること を注意することが必要である[3].

3.1.4 疲労の分類

破損繰返し数10⁴から10⁵回程度を境に、それ以上の場合 を高サイクル疲労 (high cycle fatigue, HCF と略す場合も ある)、それ以下の場合を低サイクル疲労 (low cycle fatigue, LCF と略す場合もある) あるいは塑性疲労と呼ぶ [5].また、詳細は割愛するが、10⁷回以上の疲労は特有の 損傷過程をたどる場合があり、特に超高サイクル疲労 (very high cycle fatigue) あるいはギガサイクル疲労 (giga -cycle fatigue) と呼ばれる.

低サイクル疲労では、疲労試験における負荷応力が材料

の降伏応力を超えるため、材用は塑性変形する.降伏応力 後の応力-ひずみ関係は、弾性変形領域と異なり非線形性 を有するため、低サイクル疲労試験を応力制御(定応力) で実施するか、ひずみ制御(定ひずみ)で実施するかに よって、得られる疲労寿命などの結果は異なる場合が多い [3].よって、低サイクル疲労試験をひずみ制御で実施す る場合には、縦軸を応力とする S-N 曲線の代わりに、縦軸 をひずみとする ε-N 曲線で結果を評価するのが一般的であ る[5].

3.2 疲労試験法とその規格

疲労試験は負荷方式に応じて複数の種類がある.現在も 評価に使用されている代表的なものとしては,引張圧縮疲 労試験,回転曲げ疲労試験,平板曲げ疲労試験,ねじり疲 労試験,組合せ応力疲労試験などがある.歴史的には,車 軸の疲労破壊をきっかけに疲労試験が重視された経緯があ るため,回転曲げ疲労試験と呼ばれる曲げモーメントを受 けながら試験片を回転させる疲労試験法の適用事例が比較 的多い[6].しかし,材料の疲労寿命を評価する上で最も 基本的かつ汎用性のある疲労試験は引張圧縮疲労試験であ り,現在でも多くの分野で適用されている[6].

疲労試験に関する JIS の規格としては,繰返し数10⁴回以 上の疲労寿命を対象として室温大気中で行う標準試験片に よる金属材料の疲労試験方法について規定した,

Z2273「金属材料の疲れ試験方法通則」Z2274「金属材料の回転曲げ疲れ試験方法」Z2275「金属材料の平面曲げ疲れ試験方法」

があり,用語の意味,試験片,試験機,試験方法,試験結 果の取扱いが定められている.これらに加えて金属材料を 対象とした規格としては,試験温度や負荷条件などに応じ て,

Z2278「金属材料の熱疲労試験方法」

Z2279「金属材料の高温低サイクル疲労試験方法」

Z2283「金属材料の液体ヘリウム中の低サイクル疲労試 験方法」

Z2286「金属材料の高温回転曲げ疲労試験方法」

などもある. さらには,ファインセラミックスに特化した 疲労に関連する規格として,以下に示すようなものもあ る.

R1621「ファインセラミックスの室温曲げ疲労試験方法」 R1658「ファインセラミックスの高温曲げ疲労試験方法」 R1677「ファインセラミックス多孔体の室温曲げ疲労試 験方法」

R1692「ファインセラミックス基板の熱疲労試験方法」

次節以降では,種々の発電機器において重要視されてい る高温低サイクル疲労を対象とした試験方法に関して,材 料学会高温部門委員会により提唱されている試験法標準 [7]の一部を参照しながら,疲労試験に精通していない研 究者や技術者が特に注意を要する点や,核融合材料の評価 に特有な事柄を中心に概説する.

3.3 標準的な高温低サイクル疲労試験法

3.3.1 はじめに

高温低サイクル疲労試験とは、円形や矩形の断面の試験 部を有する試験片を使用し、その試験部を外部から加熱し て一定の温度に保ち、治具を介して試験片と連結された負 荷装置(アクチュエータ)により機械的に繰返し応力や繰 返しひずみを試験片に加える疲労試験のことである.試験 機にはロードセルが取り付けられ、試験中の荷重はロード セルにより計測される.試験片には変位計測装置が取り付 けられ、計測された変位を基準にひずみが算出される.ひ ずみ制御試験においては、変位計測装置の計測結果が制御 系にフィードバックされることにより、一定のひずみの繰 返し負荷が実現される.

図4に,高温低サイクル疲労試験のための試験機および 制御系の代表的な基本構成を模式図で示す.JIS などでも 規定されているように,高温低サイクル疲労試験において は,試験片の形状や加工方法,試験機(負荷装置,ひずみ 計測装置,加熱装置など),試験方法(試験片の取付け方

1:ロードセル, 2:負荷装置(アクチュエータ), 3:ロードセル, 4:加熱装置, 5:変位計測装置(伸び計), 6:温度測定装置, 7:制御装置 図4 高温低サイクル疲労試験機の構成の模式図.

法,温度計測方法,負荷方法など)のそれぞれに対する配 慮を充分施す必要がある.また,試験により得られた結果 は,破損繰返し数などを定義に則って求め,整理すること が必要である.

次項からは、その中でも JIS 等の規格には詳細が記述さ れておらず,これから疲労試験を実施しようとする研究者 や技術者の方が留意すべき事項として、試験片、変位計測 装置,試験片の温度測定方法および試験結果の解析につい て概説する. なお, これらの説明は, 試験雰囲気は一定温 度下の大気雰囲気、負荷は試験片軸方向の単軸負荷、制御 方式はひずみ制御(定ひずみ振幅制御)とした,金属材料 を対象とした引張圧縮高温低サイクル疲労試験のみを想定 したものであり、標準的ではあるものの限定された条件に おける疲労試験法についての説明であることを理解された い.よって、核融合炉材料では多用される真空中試験特有 の課題、配管材料などで考慮すべき環境中疲労試験特有の 課題、核融合炉機器において高温低サイクル疲労以外に想 定される熱疲労試験や高サイクル疲労試験などの特有の課 題、セラミックス材料をはじめとする非金属材料の試験特 有の課題については割愛する.

3.3.2 試験片

高温低サイクル疲労試験では,試験部(標点部とも呼ぶ) に平行部を有する中実丸棒型試験片を採用する場合が多 く,一部では,試験部が連続的に曲率を有する中実砂時型 試験片や試験部断面が矩形の板型試験片も採用される. 図5に,典型的な中実丸棒型試験片および中実砂時型試験 片の外観写真を示す.中実丸棒型試験片の形状は,試験部 断面の直径を基準に,試験部の長さや試験部縁部の曲率半 径を規定する場合が多く,中実砂時型試験片の形状は,試 験部の最小断面の直径を基準に,砂時計型をした試験部の 曲率半径を規定する場合が多い.なお,中実砂時型試験片 については,中実丸棒型試験片に比べて座屈が生じにく く,き裂発生位置が限定されるなどの利点があるが,一方 で,中実丸棒型試験片と異なる疲労寿命を示す場合がある との報告もあるため,使用にあたっては注意が必要である [8-11].

図5 疲労試験片の外観写真.

前述のとおり,疲労損傷過程においては,そのすべり帯 や入込み・突出しの形成,き裂の発生に至るまで,材料の 表面における性状変化が大きな役割を担っている.よっ て,疲労試験に使用する試験片の試験部の表面仕上げの状 態は,試験結果に大きな影響を与える.したがって,試験 部の表面は,充分に研磨を施し,傷や加工層などを除去す ることが重要である.特に,引張圧縮試験に代表される軸 力試験では,研磨由来の残存傷が試験によるき裂発生を促 進することを抑制するため,慣例的に,応力・ひずみ負荷 方向と平行な方向に研磨をすることが良いとされている.

最後に,核融合炉機器の構造材料の中には,運転中に中 性子の照射を受けるものがある.それら構造材料の本質的 な疲労寿命を明らかにするためには,中性子照射材の疲労 寿命を評価することが必要である.中性子照射後の疲労寿 命の評価においては,試験片を試験用軽水炉などに装てん して中性子を照射し,その後炉外で疲労試験を実施する. この際,試験炉中で試験片を装てんできる容量が限られて いることや,照射による誘導放射能が照射後試験の妨げに なることから,試験片を小型化する場合がある.ここで注 意すべきは,JISなどで規定されている疲労試験法は,こう いった小型化された試験片は考慮されていないことであ る.例えばJISZ 2279では,中実丸棒型試験片の試験部断 面直径は6mm以上とされている.

3.3.3 変位計測装置

中実丸棒型試験片を用いた高温低サイクル疲労試験片に 適用される変位計測装置の代表例を図6に示す.アルミナ などの高温での使用が可能な材料で製作された,先端の 尖った2本のロッドを試験片に押し付け固定し,そのロッ ド間の距離の変化を種々の方式で検出することにより,疲 労試験中の試験部の軸方向の変位を計測する.変位検出の 方式としては,ひずみゲージ式,静電容量式および差動ト ランス式などがあるが,ここでは詳細は割愛する.

この方式の変位計測装置は、比較的原理および構造が簡 単で、計測精度も高い反面、取付けには熟練を要する. 試 験片への取付けにおいては、双方のロッドを確実に試験片 に押し付け、また、その押し付け力の均衡を図ることが重 要である. 変位計測装置で計測された変位に基づくひずみ 制御試験において,試験中に試験片からロッドが外れた場合には,試験の制御は不能となり,負荷装置が暴走してしまう可能性がある.また,ひずみ計測・制御精度の観点では,2本のロッドの間隔を,予め設定された標点間距離(G.L; gauge length)に合わせることが重要である.一般的な定義から,試験片軸方向のひずみは,変位計測装置の初期の値であるロッドの間隔(L_0)と,同装置で試験中に計測された変位($L_0 + \Delta L$ または ΔL)から求められる.一方で,実際の試験においては,G.L.は予め制御系などで設定されており,試験中に検出された ΔL とG.L.を用いてひずみを算出し,試験が制御されることから,G.L.と L_0 が一致していることが前提となっている.したがって,それらが大きく乖離した状態で変位計測装置を取り付けると,ひずみの値の精度は大幅に低下する.

最後に、中実砂時型試験片についてはその軸方向ひずみ を測定することはできないため、試験部の最小断面の径方 向ひずみを測定し、軸方向ひずみに換算することにより、 ひずみ制御の試験が行われる.径方向のひずみの測定に は、レーザ変位計などが使用される.しかし、径方向ひず みから軸方向ひずみへの換算式については議論があり、前 述の中実丸棒型試験片との疲労寿命の違いに影響を与えて いる可能性があることに注意が必要である[8-11].

3.3.4 試験片の温度測定方法

長時間の安定性が求められる高温低サイクル疲労試験で の試験片の温度測定においては、熱電対の使用が最も簡便 かつ精度が高いといえる.熱電対による温度測定として は、熱電対素線の先端を疲労試験片の試験部に接触させ、 固定することが望ましく、その固定手段としては溶接が最 も簡便かつ信頼性が高い.しかし、溶接熱影響や溶融によ り、溶接部およびその周辺は、試験片の素材そのものの組 織から改質され、き裂発生挙動などの疲労特性も変化して しまう場合がある.また、当該部位は応力集中が生じるた め、場合によってはき裂の発生源となってしまう恐れもあ る.このような懸念を回避するため、図6に示すように、 試験部に熱電対を溶接せずに、試験部縁部の曲率を有する 部位に溶接することがある.ただし、試験片の加熱方法に

図6 高温低サイクル疲労試験における試験片,変位計測装置, 加熱装置と熱電対の取付け状態の外観写真.

もよるが,この場合には試験部と当該部位の温度が異なる 可能性があるため,予め両者の温度の相関を調べた上で, その関係を基に実際の疲労試験における試験温度制御をす ると良い.

熱電対以外の温度測定の方法としては、赤外線放射温度 計を用いた方法がある.赤外線放射温度計の大きな特徴と して非接触で温度測定ができる点があり、例えば真空中で の疲労試験においては真空チャンバーの外からの計測がで き、また熱電対の溶接ができないような材料や試験片に対 しても有効である.ただし、測定精度を確保するためには、 測定対象の放射率を正確に求めた上で温度測定することが 必要であり、熱電対に比べるとその精度の保証に工夫が必 要である.

3.3.5 試験結果の解析

①ヒステリシスカーブの解釈

図7に、低サイクル疲労試験における典型的な繰返し応 力-ひずみ関係 (ヒステリシスカーブ)の模式図を示す.こ のヒステリシスカーブから、個別の疲労試験の試験条件や 試験結果を示すパラメータとして、応力振幅 σ_a 、応力範囲 $\Delta \sigma (= 2\sigma_a)$,平均応力 σ_m 、応力比 $R (= \sigma_{min}/\sigma_{max})$,ひずみ 振幅 ϵ_a ,塑性ひずみ振幅 ϵ_{pa} ,弾性ひずみ振幅 ϵ_{ea} ,全ひず み範囲 $\Delta \epsilon_t (= 2\epsilon_a)$,塑性ひずみ範囲 $\Delta \epsilon_p (= 2\epsilon_{pa})$,弾性ひ ずみ範囲 $\Delta \epsilon_e (= 2\epsilon_{ea})$ などが求められ、次項以降の各種解 析や寿命予測式の構築に用いられる[5].

2破損繰返し数の導出

ひずみ制御での低サイクル疲労試験では、最終的に試験 片が破断せずに試験が終了することなどを考慮し、いわゆ る試験片破断時の繰返し数(破断寿命)ではなく、繰返し に伴うピーク応力や荷重範囲の低下挙動に基づき破損繰返 し数を導出することが多い、JISZ2279では、国内外の学協 会によって提唱されている破損繰返し数の定義を列記して いる.その中で、本章では、我が国で広く用いられている 材料学会および溶接協会により提唱されている定義につい て、核融合炉用低放射化フェライト鋼の実試験データを基 に説明する.

図8は、筆者らによって取得された低放射化フェライト 鋼 F82H のひずみ制御での低サイクル疲労試験により得ら れた繰返し負荷毎の引張ピーク応力 opeak と繰返し数 Nの 関係の一例である. 引張ピーク応力 oneak は, 前述のヒステ リシスカーブにおける引張側の最大応力である.一般的 に、製造過程において焼きなましを施された材料は繰返し 負荷にともなうピーク応力の増加(繰返し硬化)が生じ, 冷間加工や熱処理硬化を施された材料は繰返しにともなう ピーク応力の低下(繰返し軟化)が生じる[3].低放射化 フェライト鋼 F82H は、図8 でもわかるとおり、繰返し軟 化を示す材料である.材料学会および溶接協会により提唱 されている定義では、「引張ピーク応力が最大または定常 となったときの値の4分の3に低下(25%低下)するまで の繰返し数」を破損繰返し数としている.この破損繰返し 数を他と区別するため N₂₅ と記述する場合もある.図8に 示すとおり、低放射化フェライト鋼 F82H は繰返し初期の 急峻な引張応力の低下の後、定常的に低下する期間があ り、最後にき裂開口などにともなう引張ピーク応力の急峻 な低下が見られる.この試験において、いわゆる破断寿命 は約3600回であるのに対し, 引張ピーク応力 σ_{peak} と繰返し 数Nの関係のグラフから求めた破損繰返し数N25は約3220 回となる.

最後に、上述のように規格等では破損繰返し数の定義を 提唱しているものの、個別の研究論文などにおいては、必 ずしもこういった定義に即さない方法で寿命を導出した り、もしくは破損繰返し数の導出方法を明記していないま ま公開している場合も散見されるため、それら公開データ の引用の際には充分注意が必要であると考えられる.

③ひずみ - 破断繰返し数関係

低サイクル疲労は、塑性疲労とも呼ばれるように、塑性 ひずみ範囲(塑性ひずみ振幅)が疲労寿命などを支配する [3].したがって、試験における制御パラメータである全ひ ずみ範囲 $\Delta \epsilon_t$ (= $\Delta \epsilon_p + \Delta \epsilon_e$)を塑性ひずみ範囲と弾性ひずみ 範囲の和と捉え、試験結果はそれぞれに対して解析すると より理解が進む.低サイクル疲労における塑性ひずみ範囲 $\Delta \epsilon_p$ と弾性ひずみ範囲 $\Delta \epsilon_e$ に対しては、それぞれ Coffin と

図8 F82Hの室温大気中低サイクル疲労試験におけるピーク応 カと繰返し数の関係の一例.

Manson および Basquin により下式が提唱されており,そ れぞれ Coffin-Manson 則[12,13]と Basquin 則[14]と呼ばれ ている.

$$\varDelta \varepsilon_{\rm p} \cdot N_{\rm f}^{\,\rm ap} = C_{\rm p},\tag{1}$$

$$\Delta \varepsilon_{\rm e} \cdot N_{\rm f}^{\,\rm ae} = C_{\rm e}.\tag{2}$$

ここで、 a_p および C_p は疲労延性に関する定数で、それぞれ 疲労延性指数および疲労延性係数と呼ばれ、一方、 a_e およ び C_e は疲労強度に関する定数で、それぞれ疲労強度指数お よび疲労強度係数と呼ばれる[3].

図9は、低放射化フェライト鋼 F82H の室温大気中にお けるひずみ制御の低サイクル疲労試験結果について、ヒス テリシスカーブの解析により $\Delta \epsilon_p$ および $\Delta \epsilon_e$ と破損繰返し 数 N_f (ここでは N_{25})との関係をそれぞれ Coffin-Manson 則と Basquin 則に基づき定式化し、両対数グラフに示した ものである[15].前述のように、低放射化フェライト鋼 F82H は繰返し軟化するため、ひずみ制御試験において $\Delta \epsilon_t$ は一定であるが、 $\Delta \epsilon_p$ と $\Delta \epsilon_e$ は繰返しとともに変化す る.このような場合、寿命中期、具体的には破損繰返し数 の半分 (N_f /2) 近傍におけるそれぞれの値を用いて結果を 整理することが多く、ここでもその方法で求められてい る.図9 でもわかるとおり、 $\Delta \epsilon_t - N_f$ 曲線は、高ひずみ条件 (低サイクル条件)では Coffin-Manson 則の式に漸近し、低ひ ずみ条件(高サイクル条件)では Basquin 則に漸近する[3].

④共通勾配法による寿命予測

いわゆる試験片を用いた低サイクル疲労試験における変 位計測装置による測定や,実構造物を対象としたひずみ ゲージなどによる測定で得られる情報は,塑性ひずみでは なく全ひずみである[3].したがって,前項のような塑性 ひずみや弾性ひずみ範囲に基づく寿命則ではなく,全ひず み範囲に基づく寿命則のほうが実用上は望ましい.Manson は,引張試験などで得られる静的な機械的性質を用い

図 9 F82H の室温大気中低サイクル疲労試験における全ひずみ 範囲、塑性ひずみ範囲および弾性ひずみ範囲と破損繰返し 数の関係[15].

た全ひずみ範囲と破損繰返し数の関係の予測式を提唱して おり,共通勾配法を呼ばれている[16].

$$\Delta \epsilon_{\rm t} = 3.5 \left(\sigma_{\rm B}/E \right) N^{-0.12} + \epsilon_{\rm f}^{0.6} N^{-0.6}. \tag{3}$$

ここで, $\sigma_{\rm B}$ は引張強さ, *E* はヤング率, は破断延性である.

最後に, Coffin-Manson 則と Basquin 則, Manson の共通 勾配法ともに,材料の疲労寿命を予測する上では非常に有 効なツールといえる.ただし,これらは鉄鋼材料などの工 業的に成熟した材料を対象に研究が長年進められ,その有 効性が実証されている経緯もあるため,核融合炉材料はじ め近年開発された特殊な材料に対しては,これら寿命則の 適用妥当性を十分精査してから使用することが必要である と考えられる.

3.4 核融合炉材料の評価における課題と展望

現在開発が進められている原型炉ブランケットにおいて は、運転初期のパルス運転モード時やディスラプション等 による疲労、冷却媒体流動による疲労など、さまざまな疲 労が構造材料に生じることが想定される.よって、設計時 および供用中においては寿命評価が必要であるため、構造 材料の疲労寿命データベースが不可欠となる.

原型炉での使用が想定されている低放射化フェライト鋼 F82H については、比較的多くの規格に則った室温試験 データが複数の機関によって取得されている.一方,高温 データについては、かなり限定されたものしか現状では取 得されていない.低放射化フェライト鋼を使用したブラン ケットの最高使用温度は550℃が想定されているため、設 計マージンを考慮し、最高700℃程度までの疲労寿命デー タの整備と最適疲労設計曲線(S-N曲線やひずみ-破断繰返 し数の関係に対し、構造設計基準等に基づく安全率を考慮 した曲線のこと.構造設計等においてはこの最適疲労設計 曲線を用いて寿命評価することが多い)の構築が喫緊の課 題と考えられる[17].

中性子照射を受ける核融合炉構造材料については,疲労 損傷挙動や疲労寿命に及ぼす中性子照射効果の評価が不可 欠である.中性子照射効果の評価においては,研究用原子 炉や加速器を用いた中性子源等の適用が有効であるが,い ずれも照射体積が制限されることから微小試験片の適用が 必要である.JISなどの既存の疲労試験規格においては,微 小試験片は範疇に入っていないため,標準試験と同等の評 価が可能であり,構造物の寿命予測に適用可能であること を,核融合コミュニティが先導して実証し,規格化などに より広く受け入れられる試験技術として確立することが必 要とされる.

微小試験片を用いた疲労試験においては,試験片の形 状,サイズ,加工法,表面処理の最適化や,ひずみ計測の 精度,照射材の試験を想定した遠隔制御性などが代表的な 技術開発課題として挙げられる.この中で,試験片のサイ ズに関しては,低放射化フェライト鋼 F82H で製作された 試験部直径が1mm 程度の微小試験片を用いた室温大気中 における低サイクル疲労試験において,標準試験片と同等 の疲労寿命を取得可能であることが示された[15].しか し、高温試験など、実機使用環境を想定した試験データに 基づくその精度や妥当性などの検証はまだなされておら ず、核融合炉構造材料用の微小試験片技術(small specimen test technique)として早期に確立し、中性子照射環境 における疲労寿命予測に反映することが重要である[16].

最後に,疲労寿命などの信頼性の高いデータベースを整 備するためには非常に長い時間とコストを必要とする. よって,新たに全てのデータを取得し,核融合炉の設計に 反映することは困難な場合も想定される.一方,規格化さ れ,発電機器などで豊富な使用実績を有する鉄鋼材料を中 心とした材料の疲労寿命等のデータは,例えば物質・材料 研究機構においてデータベース化され,公開されており, 疲労データシートという形で入手も可能である[18].例え ば低放射化フェライト鋼については,それに近い材料の データベースは概ね完備されているといえるため,材料学 的な観点からそれらのデータの適用性を確認した上で参照 することも,一つの合理的な取組みと考えられる.

参考文献

- [1] 日本機械学会:技術資料,機械・構造物の破損事例と 解析技術(日本機械学会,1984).
- [2]日本材料科学会編:先端材料シリーズ 寿命・余寿命 予測と材料(裳華房, 2006).
- [3] 日本材料学会編:疲労設計便覧(養賢堂, 2005).
- [4] P.J.E. Forsyth, Acta Metal. 11, 703 (1963).
- [5] 日本材料学会編:改訂材料強度学(2005).
- [6] 日本材料学会編:改訂機械材料学(2011).
- [7] 日本材料学会高温強度部門委員会編:高温低サイクル 疲労試験法標準, JSMS-SD-7-03 (2003).
- [8] T. Bui-Quoc and A. Biron, Exp. Mech. 18, 127 (1978).
- [9] 森野数博他:日本機械学会論文集 A60-571,92 (1994).
- [10] 幡中憲治, 藤満達朗:日本機械学会論文集 A52-484, 2566 (1986).
- [11] 服部 博他: 材料 35, 343 (1986).
- [12] L.F. Coffin, Trans. ASME 76, 931 (1954).
- [13] S.S. Manson, NACA Tech. Note 2933 (1953).
- [14] O.H. Basquin, Proc. ASTM 10, 625 (1910).
- [15] S. Nogami et al., J. Nucl. Mater. 441, 125 (2013).
- [16] S.S. Manson, Experimental Mechanics 5, 193 (1965).
- [17] 芝 清之他: プラズマ・核融合学会誌 87,187 (2011).
- [18] http://smds.nims.go.jp/fatigue/

野上修平

東北大学大学院工学研究科量子エネルギー 工学専攻准教授.日立製作所において発電 機器の構造信頼性に関する研究に従事した 後,現在の職に移り,鉄鋼材料やセラミッ

クス複合材料を対象に,疲労などの機械特性に及ぼす中性子 照射の影響評価と,その評価技術の高度化に向けた研究開発 に従事.自分自身の疲労が疲労研究の進捗に勝らないように するのが永遠のテーマ.