Special Topic Articles

Thermonuclear Fusion Experiment with Tungsten Divertor

1. Introduction ... KAMADA Yutaka 181
2. The Experiments with Tungsten Divertor in Tokamak Devices URANO Hajime 183
3. Issues and Approaches for ITER with the Full Tungsten Divertor from Day One NAKANO Tomohide 191
4. Final Remark ... UEDA Yoshio 197

Lecture Note

Particle Kinetics - from Planets to Charged Particles

4. Applications

4.3 The Nosé Thermostat and Symplectic Integrator in Molecular Dynamics ITO Atsushi M. 199
4.4 Chaos in Runaway Electron Motion .. MATSUYAMA Akinobu 204
4.5 Dynamics of Relativistic Charged Particle in Free-Electron Laser
.. KISHIMOTO Yasuaki and IMADERA Kenji 209
5. Concluding Remarks .. FURUKAWA Masaru 214

Round-Table Discussion

Current Status and Challenges of Nuclear Fusion Research toward Development Phase of a DEMO Reactor

... WATANABE Kazuhito, KIKUCHI Koichi, SEMBA Hideshi, IKEBE Yasushi,
TANIGAWA Hisashi, OCHIAI Kentaro, TANIGAWA Hiroyasu, NAKAMURA Makoto,
MIYAZAWA Junichi, NOGAMI Shuhei, MATSUNAGA Go, YAMANOI Kohei and KASADA Ryuta 215

PFR Abstracts ... 231
Information .. 232
Plasma & Fusion Calendar ... 239
New Books .. 240
Announcement .. 241

Cover

(a) Magnetic field generated in plasma channel when an ultra-intense laser pulse propagates in the critical density plasma \(n_e = 10^{21} \text{ cm}^{-3} \).
(b) The strong magnetic field (~ 100 MG) traps and scatters low energy electrons. (b) Electrons that have energy over a few MeV are collimated by the field. (c) The angular distributions of the test electrons that arrive at the simulation boundaries. The test electrons that have a uniform angular distribution are scattered (red solid line) and collimated (green dotted line) by the magnetic field. (Tomoyuki IWAWAKI et al., Plasma and Fusion Research Vol. 10, 1304005 (2015) http://www.jspfor.jp/PFR/)

Published Monthly by
The Japan Society of Plasma Science and Nuclear Fusion Research
3-1-1, Uchiyama, Chikusa-ku, Nagoya 464-0073, Japan
Tel 052-735-3185, Fax 052-735-3483, E-mail: plasma@jspfor.jp, URL: http://www.jspfor.jp/