The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research
Vol. 91, No.1, January 2015

Prologue NINOMIYA Hiromasa 1
Commentary
Plasma Diagnostics by Cavity Ringdown Absorption Spectroscopy SASAKI Koichi 2

Special Topic Articles
The Cauchy-Condition Surface (CCS) Method for Plasma Equilibrium Shape Reproduction
1. Introductory Remarks ... KURIHARA Kenichi 10
2. The Principle of the CCS Method .. KURIHARA Kenichi 13
3. Applications of the CCS Method to the Diagnosis and the Control for Various Types of Magnetic Confinement Devices ITAGAKI Masafumi. MIYATA Yoshiaki and NAKAMURA Kazuo 23
4. The Remaining Issues and Future Prospects of the CCS Method for Plasma Shape Reproduction KURIHARA Kenichi, ITAGAKI Masafumi, MIYATA Yoshiaki, NAKAMURA Kazuo 38
5. Remarks - Practical Use of the CCS Method from the Viewpoint of an Experimentalist URANO Hajime 45

Lecture Note
Particle Kinetics - from Planets to Charged Particles
1. Introduction .. FURUKAWA Masaru 48
2. Lie Transform Perturbation Theory for Hamiltonian Systems and its Application to Guiding Center Motion .. SUGAMA Hideo 51

Front Runner
Proton Beam Generation by Nanotube Accelerator ... MURAKAMI Masakatsu 69

PFR Abstracts ... 73

Information ... 74

Plasma & Fusion Calendar ... 78

Announcement ... 81

Cover
Contour maps of the magnetic field strength |B| on the flux surface |Bmax| = 0.5 for standard configuration (a), high bumpy configuration (b), and low bumpy configuration (c) in Heliotron J device, respectively. Black solid lines denote magnetic field lines. Larger and smaller magnetic ripple depth is observed in high bumpy and low bumpy configuration, respectively. The ripple depth plays an important role in determination of neoclassical transport. (Kenji NISHIOKA et al., Plasma and Fusion Research Vol.9, 1403145 (2014) http://www.jspfor.jp/PFR/)

Published Monthly by
The Japan Society of Plasma Science and Nuclear Fusion Research
3-1-1, Uehi-yama, Chikusa-ku, Nagoya 464-0075, Japan
Tel 052-735-3185, Fax 052-735-3485, E-mail plasma@jspfor.jp, URL http://www.jspfor.jp/