• 小特集 放射線照射環境下における材料物性値のその場測定

2. 材料の物性値に対する放射線照射誘起効果

2. Radiation-Induced Effects in Physical Properties of Materials

2.6 圧力管型試験片を用いた F82H 鋼の照射下クリープの評価

2.6 Evaluation of Irradiation Creep for F82H Steel by Using Pressurized Tubes

安堂正己, 野澤貴史, 廣瀬貴規, 谷川博康

ANDO Masami, NOZAWA Takashi, HIROSE Takanori and TANIGAWA Hiroyasu

(独)日本原子力研究開発機構

(原稿受付:2013年11月5日)

照射下クリープは熱クリープが生じないような低い温度域で,照射中に生じる点欠陥の移動により,クリー プ変形が生じるものであり,興味深い現象のひとつである.ブランケット構造材料の第一候補材である低放射化 フェライト鋼 F82H でも熱クリープの生じ得ない300℃での中性子照射においてクリープ変形が生じることが明 らかとなった.本節では,圧力管型クリープ試験片による照射下クリープ試験・評価についての概要について紹 介する.

Keywords:

irradiation creep, pressurized tube, reduced activation ferritic/martensitic (RAFM) steel, F82H, laser profilometersystem

2.6.1 はじめに

低放射化フェライト (RAFM) 鋼は, 優れた耐照射特性 を有し、また製造面でも工業的な基盤を十分に利用できる ことから,核融合炉のブランケット構造材料として有望な 候補材料のひとつである.(独)日本原子力研究開発機構 (JAEA) では、8%クロム、2%タングステンをベースと した F82H 鋼の開発を進めており、基本的な材料特性デー タの整備を行っている.これに加え高エネルギー中性子照 射を受けた材料からの強度特性データの取得は、ブラン ケット設計用のデータや、材料の寿命評価のために重要と なる項目であり, 原子炉照射試験による特性評価も着実に 進められてきている[1]. このうち照射下クリープについ ては,熱クリープが生じないような低い温度領域でも,照 射中に生じる点欠陥の移動が蓄積した結果, クリープ変形 が生じる点で非常に興味深い現象である.勿論,同様な温 度域で照射された材料では、このような変形はほとんど生 じることはなく、さらにこの変形は、照射後のクリープ試 験における変形よりも大きいため、水冷却ブランケットシ ステムの工学データとしても重要なもののひとつと考えら れている[2]. 通常,材料のクリープ特性は一定の応力を 付与した条件下で、クリープひずみと負荷時間との関係と して示すため、本来であれば、その変化を連続的に測定す ることが望ましい.しかしながら原子炉のような中性子照 射場で,多様な温度条件,負荷応力条件にて照射下クリー プ特性を評価することは極めて困難であり、このような点

から効率よく照射下でのクリープデータを取得する一つの 方法として, 圧力管(Pressurized Tube)型試験片を用い た照射試験がしばしば行われてきている.他方,サイクロ トロン等の加速器を用いて,応力を付与した微小試験片に 軽イオン照射を行ってクリープ特性を評価する方法も行わ れている.前者については、例えば、これまでに米国 FFTF 炉 (Fast Flux Test Facility) や HFIR 炉 (High Flux Isotope Reactor) にて400℃以上の温度での, オーステナイ ト鋼 (316SS, PCA)・フェライト鋼 (HT-9, 9Cr-1Mo) の 照射クリープや、ボイドスウェリングの研究が報告されて きている[3-6]. このうち F82H や JLF-1鋼の低放射化 フェライト鋼の照射下クリープ特性については, FFTF 炉にて照射された約400℃以上での 60 dpa までの結果[7] や, HFIR炉で照射された300~500℃での5 dpaまでの結果 [8]が報告されている.サイクロトロン等の加速器を利用 した軽イオン照射による照射下クリープの評価としては, オーステナイト鋼へのプロトン照射の結果や[9], 1000 appm までの F82H 鋼へのヘリウムイオンの注入など による報告例 [10] がある. 加速器を利用する場合は、その 場での変形量測定が可能なため,照射下クリープの基礎研 究においては有力な手法と考えられる.ただし、例えば核 融合炉で想定されているような高い照射量でのクリープ特 性評価を行うのは少々困難であるという問題がある.現 在,原子力機構ではブランケット設計を水冷却固体増殖シ ステム (WCCB) とした研究開発を進めてきており, 原型

Japan Atomic Energy Agency, Rokkasho, AOMORI 039-3212, Japan

author'se-mail: ando.masami@jaea.go.jp

炉ブランケットでは F82H 鋼での製作を想定している. こ の場合,運転時の冷却水温度が約300℃となるため,この温 度域付近での低放射化フェライト鋼に関する照射下クリー プデータは非常に重要となる.

そこで本節では主に低放射化フェライト鋼の照射下ク リープ特性を評価するために、日米協力照射試験のプログ ラムの下、主に米国オークリッジ国立研究所(ORNL)滞 在中に実施した圧力管型クリープ試験片を用いた中性子照 射実験・照射後試験の概要と、得られた照射下クリープ特 性について紹介する.

2.6.2 圧力管型試験片による照射試験の概要 (1) 圧力管型クリープ試験片について

用いた主な評価材料は、JAEA において開発された低放 射化フェライト鋼F82H, IEAヒート鋼である. この板材か ら,照射用試験片を準備した.鋼の化学組成と熱処理は, [11]を参照されたい、今回,照射下クリープ試験のために 圧力管型クリープ試験片を使用した. 試験片の形状は, 図1のように外径 4.57 mm,長さ20~25 mmの円筒形であ る. 基本的には試験片の元となる部品は日本側より供給 し、米国にて試験片組立を実施している. 試験片は鋼材か ら削り出された管と両端のエンドキャップから成ってお り、片方のエンドキャップには小さな穴が開けてある。特 に測定対象となる管部については, ①適切な応力を付与で きるように、管壁の厚みをなるべく正確に測定しておくこ と、②照射下クリープにより生じるひずみの量は非常に小 さいことが予想されるため,管壁表面側は極めて平滑な面 に仕上げておくことの2点が重要となる.これらの点につ いて確認を行った後、照射温度にて管壁に所定のフープ応 力が付与できるよう, ヘリウム雰囲気容器内にて, エンド キャップの小孔を電子ビーム溶接し製作した. なおフープ 応力条件は0から400 MPa までとしている. これらの試験 片は、熱クリープ試験を行うために準備したコントロール 試験片を含め、各試験片ごとに、照射前の外径測定を非接 触型レーザー測定システムにて実施し、中性子照射試験に 供した.通常,試験片準備から照射後試験までに数年程度 の期間が必要となるため,照射材との比較を行う上でも, これらの情報の管理は非常に重要である.

(2) 照射試験について

照射試験は ORNL 内の HFIR 炉にて, 照射温度300~ 500℃で 損傷 量約5 dpa まで RB11J, 12J[12], 15J[13] キャプセルにより行われた. RB11J/12J については1998年

図1 照射下クリープ測定に用いた圧力管の寸法と外観.

に, RB15J については2009年に照射が完了している. 照射 は炉内の RB (Removable Beryllium) 位置にて実施された. これらの RB 照射キャプセルは, 炉心位置からは離れてい るものの, 炉心付近のTargetキャプセルに比べて大容量で あり, 熱中性子の影響を防ぐためのシールドを装着するこ とも可能であるという特徴をもつ. 照射温度については熱 電対によって計測され, 照射量は, 炉の運転出力から算出 された. このときの高速中性子照射量は, 1×10²² n/cm² であった. **表1**には各圧力管型クリープ試験片に対する照 射温度とその時のフープ応力を示す.

(3) 照射後試験について

照射された圧力管の外径測定は図2のようにホットセル に導入された非接触型レーザー測定システムを用いてそれ ぞれ3回ずつ測定を行った.データの解析には,測定領域 中央部の3/5の部分の外径のデータを測定しその平均を 取っている.なお,非常に微小なひずみ量の測定となるた めに,数時間おきに基準試験片による測定を実施して周囲 の温度変化等の影響の較正を行うとともに,ハンドリング 時に測定する試験片の表面を傷つけない,測定表面部をア ルコールにて洗浄する等,測定環境には極力注意を払って 実施した.実験に用いた測定系の精度は,約4×10⁻⁴ mm

表1 圧力管型試験片の照射温度とフープ応力(MPa).

11J	15J	15J	12J
300℃	300℃	400℃	500℃
400	380	250	200
330	340	200	160
250	300	170	100
160	250	150	50
0	200	100	0
	150	0	
	100		
	0		

図2 セル内に導入されたレーザー測定システムと測定方法の模 式図.

である.得られたひずみ量を,圧力管外壁厚中央部でのひ ずみ量に変換したものを有効ひずみとし,同様に単軸応力 相当に換算したものを有効応力として整理した.詳細につ いては, Gilbert らの報告に詳しい[14].

2.6.3 圧力管型試験片による低放射化フェライ ト鋼の照射下クリープ挙動

図3に、照射温度300~500℃にて RB11J, 12J, 15J キャ プセルで照射された低放射化フェライト鋼の有効応力と有 効ひずみ(%)との関係を示す.F82H 鋼における300℃付 近での照射下クリープの報告例はこれまでほとんどなく, 著者らにより,熱クリープが生じない300℃での低い温度 においても、僅かながら照射誘起クリープが生じることが 報告されている[8].すべての照射温度において、ある応 力までは応力とひずみの関係は直線関係を示すが、高温に なるに従い、より低い応力にて直線関係から外れる傾向に あることがわかる.照射温度500℃材の場合,急激なクリー プひずみの増加は照射クリープの寄与分と熱クリープの寄 与分を含むものであり、熱クリープひずみ量分がどの程度 を占めているのかについては、同形状のコントロール試験 片による熱クリープ試験を行い、これらの測定結果を比較 検討する必要がある.

図4(a)は,RB11J・12Jの測定済圧力管のいくつかの中 央部を切断して小片とし,ORNLから日本に輸送後,透過 電子顕微鏡によりミクロ組織を観察した結果の例を示す. 図4(b)は、300℃,5 dpa,フープ応力 250 MPa でのミクロ 組織である.低倍率の観察では、フープ応力なしの場合の ミクロ組織構造との顕著な相違はみられていない.また カーボンレプリカ像の結果では、炭化物が旧オーステナイ ト粒界に沿う傾向にあることや,他の300℃照射材で確認 されている球状の析出物が確認されている.図4(c) は、500℃,5 dpa,フープ応力 200 MPa でのミクロ組織で

図 3 照射温度300~500℃, 5dpa で照射された F82H 鋼の応力と ひずみの関係.

ある.この条件は,照射クリープと熱クリープが含まれる 条件であると考えられるが,マルテンサイト構造の回復と いくらかのセル構造が観察され,また 200 nm 以上の炭化 物が粒界に沿っていることが観察された.なお,いずれの 条件においても,ボイドはみられていない.

図5に、これまで圧力管型クリープ試験片より得られて きている照射データから、照射下クリープ速度を示すひず み/照射量(%/dpa)と有効応力の関係についてプロット したものを示す.グラフ内のマーカの大きさは照射量を表 しており、36 dpa、60 dpa 材については、FFTF 炉での高 照射量データから得たものである.ここに今回の結果をプ ロットしてみると同様の傾向を示すことがわかる.照射温 度が比較的低い300℃・5 dpa での照射下クリープ材の場合 (図4 (b))、500℃・5 dpa での照射クリープ材(図4 (c))に比べてミクロ組織の大きな変化はみられないこと から、転位組織の回復も顕著ではないと考えられる.今後、 さらに詳しくミクロ組織の評価を行う必要があるが、基本 的にはラス内の転位が照射下にて生じた点欠陥を吸収して 上昇運動を生じ、その積算の結果として、微小なひずみと

図4 測定済圧力管の組織観察の手順と得られたミクロ組織の例.

図5 F82H 鋼の照射下クリープ速度と応力との関係.

なって現れたものと考えられる.このため,クリープひず みは負荷応力(有効応力)および照射量に凡そ比例して増 加するものと考えられ,照射下クリープ速度が,各温度に て一定値であるとすれば,照射温度300℃であっても高照 射量側では,無視できない量になりうる可能性があること を考慮しておく必要がある.

2.6.4 まとめ

圧力管型クリープ試験片を用いた照射下クリープの評価 ということで、主に低放射化フェライト鋼 F82H 鋼につい ての中性子照射材の最近の結果について簡単にまとめてみ た.圧力管型の試験片を用いた試験は、他の強度試験に比 べ試験片の製作段階から非常に手間のかかる作業であり、 また負荷が多軸応力であることや連続したクリープ変形の 測定を行うことができないなど、データの取得・評価も容 易ではない.最近では、微小引張試験片等を用いた照射ク リープ試験用ラビットキャプセルの開発も進められている ところであり、工学データ取得の面からも一層の発展が期 待されるところである.

謝 辞

本節は、筆者らが日米協力の下、ORNL に駐在員として 滞在した際に実施した内容であり、当時の Metals and Ceramics 部門のS.J. Zinkle 博士, R.E. Stoller 博士, M.L.Grossbeck 博士, M. Li 氏, L.T. Gibson 氏, J. Gardner 氏, ホッ トラボのスタッフなど、様々な方々に大変お世話になりま した.また 11J/12J 材につきましては、Jupiter プログラム の下,室蘭工大 幸野豊先生らにより準備されたクリープ 試験片を JAEA にて照射後試験した結果であります.最後 に多くの支援をいただいた日本の RAFM 研究者の皆様方 に感謝申し上げます.

参考文献

- [1] H. Tanigawa et al., J. Nucl. Mater. 417, 9 (2011).
- [2] Y. Kurata et al., J. Nucl. Mater. 283-287, 386 (2000).
- [3] A.F. Rowcliffe and M. L. Grossbeck, J. Nucl. Mater. 122-123, 181 (1984).
- [4] R.J. Puigh, J. Nucl. Mater. 141-143, 954 (1986).
- [5] M.L. Grossbeck and J.A. Horak, J. Nucl. Mater. 155-157, 1001 (1988).
- [6] F.A. Garner and R.J. Puigh, J. Nucl. Mater.179-181, 577 (1991).
- [7] A. Kohyama et al., J. Nucl. Mater. 212-215, 751 (1994).
- [8] M. Ando *et al.*, J. Nucl. Mater. **367-370**, 122 (2007).
- [9] J. Nagakawa et al., J. Nucl. Mater. 283-287, 391 (2000).
- [10] N. Yamamoto et al., J. Nucl. Mater. 307-311, 217 (2002).
- [11] K. Shiba et al., JAERI-Tech 97-038(1997).
- [12] K. E. Lenox and M. L. Grossbeck, Fusion Reactor Mater. DOE/ER-0313/25 310 (1998).
- [13] T. Hirose et al., DOE/ER-0313/46 FRM Semiannual Progress Report (2009) 72-78.
- [14] E.R. Gilbert and L.D. Blackburn, Trans. ASME, J. Eng. Mater. Technol. 99, 168 (1977).