JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research
Vol. 89, No.11, November 2013

Project Review

Japan-US Joint Research Project TITAN
1. Introduction ... OKUNO Kenji 705
2. Objectives and Procedure of the Project MUROGA Takeo 706
3. Transport of Tritium and Heat in First Walls and Blankets
 3.1 Tritium and Mass Transfer in First Wall TOKUNAGA Kazutoshi, MIYAMOTO Mitsuoka, OTSUKA Teppei, KAJITA Shin, OHNO Noriyasu and UEDA Yoshio 709
 3.2 Tritium Transfer in Fusion Reactor Blanket TERAI Takayuki, FUKADA Satoshi, KONISHI Satoshi, KATAYAMA Kazunari, YAMAMOTO Yasushi, NOBORIO Kazuki, EDAO Yuki and CHIKADA Takumi 714
 3.3 Flow Control and Thermohydro Modeling KUNUGI Tomoaki, YOKOMINE Takehiko, UEKI Yoshitaka, YUKI Kazuhisa, SATOKE Shin-ichi, EBARA Shinji and HASHIZUME Hidetoshi 719
4. Irradiation Synergism
 4.1 Irradiation-Tritium Synergism HATANO Yuji, OYA Yasuhisa, HARA Masanori, ODA Takuji, OTSUKA Teppei, SATO Koichi and ZHIANG Kun 725
 4.2 Joining and Coating System Integrity KIMURA Akikazu, HASHIMOTO Naoyuki, NOH Sanghoon, YABUUCHI Kiyohiro and OHNUKI Somei 731
 4.3 Dynamic Deformation Behavior HASEGAWA Akira, HIROKIKI Tatsuya, NOGAMI Shuhei and SHIKAMA Tatsuo 737
5. System Integration Modeling .. SAGARA Akio, NORIMATSU Takayoshi and HASHIZUME Hidetoshi 743
7. Summary ... OKUKI Kenji 752

Special Topic Articles

Overview and Prospects: Frontier Researches in Magnetic Reconnection - 1. Introduction - Rapid Progress in Interdisciplinary Research of Magnetic Reconnection ONO Yasushi, MATSUMOTO Ryoji, HOSHINO Masahiro, SHIMIZU Yoshifumi and HIRAICHI Ritoku 753
2. Recent Researches on Fast Magnetic Reconnection Mechanism
 2.1 Dissipation of Current Sheet .. HIRAICHI Ritoku 759
 2.2 Interactions between Reconnection, Plasma Waves and Turbulence SHINOHARA Iku and YOKO Nobumitsu 765
 2.3 Plasmoid Ejection and Non-Steady Magnetic Reconnection INOMOTO Michiaki and NISHIZUKA Naoto 769
 2.4 Interaction of Two Magnetic Reconnections-Structure Driven Nonlinear Instability
 and the Origin of Explosive Magnetic Reconnection KISHIMOTO Yasuaki and JANVIER Miho 774
 2.5 Explosive Reconnection Caused by 3D Magnetic Field Topology KUSANO Kanya and ONO Yasushi 780
 2.6 Summary ... INOMOTO Michiaki 784
3. Energy Conversion Effects of Magnetic Reconnection
 3.1 Plasma Heating through Magnetic Reconnection IMADA Shinsuke and INOMOTO Michiaki 786
 3.2 Energetic Particles in Magnetic Reconnection: Particle Acceleration in Turbulence HOSHINO Masahiro 792
 3.3 Anomalous Plasma Heating and Acceleration by Plasmoid NISHIZUKA Naoto 796
 3.4 Summary .. IMADA Shinsuke and ONO Yasushi 801

Lecture Note

Basis for Radiation Measurement in Fusion Facilities
4. Radiation Control in the JT-60 Facility
 4.1 Radiation Measurement for Tokamak Fusion Device Operation under Neutron Environment SUKEMASHI Atsuhiko 805
 4.2 Radiation Safety Management in the JT-60 Facilities KOBAYASHI Kazuhiro and SASAJIMA Tadakazu 810
5. Summary and Consideration for the Future KAWANO Takao 814

PFR Abstracts

- Information ... 820

Plasma & Fusion Calendar ... 824

Letters to the Editor .. 826

Announcement .. 827

Cover

Neutron-gamma discrimination using fast ADC: each dot corresponds to each pulse. Pulses enclosed by each line are picked up as 14.1 MeV neutrons, 2.45 MeV neutrons, and gamma-rays, respectively. Digital postprocess allows us accurate discrimination so that it becomes possible even to detect small amount of 14.1 MeV neutrons produced by d-T reaction. Improvement of discrimination procedure and hardware has been carried out, aiming at more accurate measurement and reliable operation. (Kouji SHINOHARA et al., Plasma and Fusion Research Vol.8, 1402144 (2013) http://www.jspf.or.jp/PFR/)

Published Monthly by
The Japan Society of Plasma Science and Nuclear Fusion Research
3-1-1, Uchiyama, Chikusa-ku, Nagoya 464-0075, Japan
Tel 052-735-3185, Fax 052-735-3485, E-mail plasma@jspf.or.jp, URL http://www.jspf.or.jp/