Front Runner
A View of Technology Maturity Assessment to Realize Fusion Reactor by Japanese Young Researchers
... KASADA Ryuta, GOTO Takuya, FUJOKA Shinsuke, HIWATARI Ryoji,
OYAMA Naoyuki, TANIGAWA Hiroyasu, MIYAZAWA Junichi and Young Scientists Special Interest Group on Fusion Reactor Realization

Commentary
In-Liquid Plasma Can Bring Us a Hydrogen-Powered World "Running a Hydrogen Vehicle on Waste Oil!"
... NOMURA Shinfuku

Special Topic Articles
Current Status and Future Prospects of Plasma-Assisted Combustion
1. Introduction ... UESUGI Yoshihiko 207
2. Nonequilibrium Plasma-Assisted Combustion: A Review of Recent Progress SUN Wen Ting and JU Yiguang 208
3. Chemical Kinetics of Plasma-Assisted Combustion Possibility of Ignition Delay Shortening by Plasma-Support
... ANDO Hiromitsu, SAKAI Yasuyuki and KUWAHARA Kazunari 220
4. Effects of Nonequilibrium Plasmas on Steady-State Premixed Burner Flame
.. UESUGI Yoshihiko and SASAKI Koichi 225
5. Radical Measurements and Ignition Characteristics of Repetitive Nano-Pulse Discharges Plasma
... WATANABE Masato, HOTTA Eiki, TANOUE Kimitoshi, USHIMARU Kohji,
KUBOYAMA Tatsuya and MORIYOSHI Yasuo 229
... IKEDA Yuji and NISHIYAMA Atsushi 234
7. Promise of Giant Pulse Micro-Laser for Engine Ignition
... TAIRA Takunori, TSUNEKANE Masaki, KANEHARA Kenji,
MORISHIMA Shingo, TAGUCHI Nobuyuki and SUGIURA Akimitsu 238
8. Summary and Prospects ... SASAKI Koichi 242

Lecture Note
Methods of Fusion Plasma Simulation –Utilizing Massively-Parallel Computation–
5. Coding Techniques of Particle Simulations .. NAITOU Hiroshi and SATAKE Shinsuke 245

PFR Abstracts ... NAITOU Hiroshi and SATAKE Shinsuke 261
Information ... 263
Plasma & Fusion Calendar ... 267
Announcement ... 269

Cover
The temporal evolution of magnetic perturbations at the onset of a neoclassical tearing mode (NTM) in a high poloidal beta mode discharge in JT-60U. Upper figure: the temporal evolution of the magnetic perturbation amplitude at the toroidal angle around 0 degree. Lower figure: the temporal evolution of the profile of magnetic perturbations. An NTM with the poloidal mode number \(m = 2 \) and the toroidal mode number \(n = 1 \) is triggered by a minor collapse occurred at the safety factor \(q \approx 2 \) at \(t = 6.115 \) s. (Akihiko ISAYAMA et al., Plasma and Fusion Research Vol.8 1402013 (2013) http://www.jspfor.jp/PFR/)