●●● 小特集 重イオン慣性核融合のためのエネルギードライバー開発の進展

5. 最終集束系

菊 池 崇 志,小 栗 慶 之¹⁾ 長岡技術科学大学,¹⁾東京工業大学 (原稿受付:2013年1月21日)

重イオン慣性核融合や高エネルギー密度科学研究に関連するビームの集束からビームと標的の相互作用について、特に、大電流重イオンビームの進行方向パルス圧縮と高温・高密度プラズマや Warm Dense Matter への 重イオンのエネルギー付与について解説する.

Keywords:

final beam bunching, longitudinal pulse compression, stopping power, beam-plasma interaction

5.1 重イオンビームドライバーの最終段

重イオン慣性核融合実現のキーポイントである重イオン ビームの生成には、従来の粒子加速器で培われてきた技術 とは大きく異なる要求がある.特に、本章では、重イオン ビームドライバーの最終段で行われる、バンチング・パル ス圧縮と整形された重イオンビームと標的との相互作用に ついて、重イオン慣性核融合のエネルギードライバーに特 有の話題を紹介する.

5.2 大電流重イオンビームの進行方向圧縮 5.2.1 進行方向パルス圧縮の目的

一般的な粒子加速器システムと同様に、重イオン慣性核 融合においても、イオン源で生成されたイオンを引き出 し,線形加速器あるいは円形加速器を使って所定の高エネ ルギー粒子ビームとし、標的へ当てるために集束する、と いう一連の操作を行う. 重イオン慣性核融合では、大電流 の重イオンビームが必要とされるため、多数の質量の大き い粒子を加速・輸送しなければならない.特に、イオン源 を出たばかりの重イオンは運動エネルギーが低いため、進 行方向に対して半径方向に拡散しやすい. このため, 低エ ネルギー領域は空間電荷効果を抑えるためにパルス幅を長 くし、まずはとにかく重イオンを加速して高エネルギーに する対策が講じられることになる.一方で、4章で解説さ れた誘導加速器を用いたシステムでエネルギードライバー を構築すると、印加電圧とパルス幅はトレードオフの関係 にあるため、先にパルス幅を短くしたほうが有利となる. このように加速・圧縮スキームの検討も重要となってくる [1-6]. 重イオンの運動エネルギーが上昇して高エネル ギー領域になると相対的にビームの半径方向への広がりは 小さくなるため、低エネルギー領域に比べるとビーム輸送 が容易になる.

イオン源から引き出した後の、重イオン慣性核融合のた

5. Final Focusing KIKUCHI Takashi and OGURI Yoshiyuki めの粒子加速器システムが円形加速器で構成されるか線形 加速器で構成されるかなどの議論は決着がついていない が、いずれにしろ最終段では高エネルギーになった重イオ ンビームを進行方向にパルス圧縮し、要求されるビーム電 流値に形成しなければならない(図1参照)[7].この操作 を、最終段ビーム圧縮や Final Beam Bunching, drift compression などと呼び、重イオン慣性核融合のドライバーシ ステムには欠かせない要素となっている.

線形加速器や円形加速器を抜けた重イオンビームは,運 動エネルギーが3~10 GeV,電流は100 A~1 kA,パルス 幅は数100 ns となっている.運動エネルギーは標的内でう まく止まるように考えられ,大きすぎても小さすぎても適 当ではない.また,最終的なパルス幅は燃料標的の爆縮の 時間スケールから決定され,数10 ns と見積もられている. これらの制約と上述した空間電荷効果によるビーム輸送の 難しさの観点から,ビーム電流値が決まる.このため,最 終段ではこのパルス幅の齟齬を埋めるため,急激なパルス 圧縮が要求される.上記のとおり,数100 ns を数10 ns

corresponding author's e-mail: tkikuchi@vos.nagaokaut.ac.jp

図2 進行方向パルス圧縮の仕組み.

にするため、10倍以上に進行方向を縮める.これほど急激 なイオンビームのパルス圧縮は通常の粒子加速器では必要 とされない.このため、重イオン慣性核融合に特有の課題 となっている.

5.2.2 進行方向パルス圧縮の原理と制限

パルス圧縮の原理は簡単で、ビームバンチの先頭を減 速、後端を加速し、先頭と後端に速度差をつける、である. この状態でそのまま粒子ビームを飛ばすと、減速された先 頭に、加速された後端が追いつくことになる.このため、 ビームバンチ先頭と後端の距離が縮まり、進行方向パルス 圧縮されることになる(図2参照).

このための操作として,誘導電圧重畳モジュールが用い られる.4章で解説された誘導加速の原理に基づき,パル ス電源で生成された電圧が加速ギャップに印加され,通過 した重イオンビームの速度を変調する.rf加速空洞を用い ても同様の操作をすることができるが,高調波を重ねてパ ルス圧縮のための電圧波形を形成する必要があり,柔軟な パルス印加ができる誘導加速モジュールのほうが有利と考 えられている[8].また,最終段ではビーム電流がkA級と なるため,そもそも誘導加速技術でなければハンドリング が難しい.

重イオン慣性核融合に限らず,あらゆる粒子加速器では 粒子を加速する装置だけではなく,半径方向へのビームの 拡散を抑制するための仕組みを用意している.電場あるい は磁場を用いて荷電粒子を制御するが,高エネルギー領域 では粒子が高速となっているため,ローレンツ力の観点か ら電磁石を用いて粒子軌道を調整する.

このように,進行方向パルス圧縮を行うためにはビーム バンチの先頭から後端にかけて大きな速度差をつけること が前提となるが,これには制限も発生する.重イオンビー ムドライバーの最終段では数 GeV 程度の運動エネルギー となっているため,速度差をつけるための電圧は必然的に 大きくなる.このため,多段の誘導加速モジュールを準備 しなければならない.一方で,前述のとおり粒子軌道を制 御するために電磁石を導入するため,速度が不揃いの粒子 群を輸送することが難しくなる[1,9].当然ながら,速度が 異なればローレンツ力の効きが変わり,同一の磁場分布内 で同じ曲がり方をしなくなるからである.

5.2.3 重イオン慣性核融合の最終段パルス圧縮に特徴的 なビーム物理の問題

急激なパルス圧縮操作に伴い,ビームの質が悪くなる (エミッタンス増加).まず,速度変調によって進行方向の 運動量の広がりが増す.単純な単粒子の運動であれば,進 行方向の速度変調のために印加した電圧に対して可逆的で あるが,荷電粒子の集合体であるビームバンチでは自分自 身が作る非線形な場があるため,非可逆的な操作となる. 特に,重イオンビームドライバーの最終段ではビーム電流 が非常に大きいため,この空間電荷効果の影響が大きい. これは進行方向だけでなく,ビームの半径方向に対しても 影響を及ぼす.粒子ビームは,進行方向に対して半径方向 のサイズが小さいため,空間電荷効果の影響は特に半径方 向の粒子軌道に大きな影響を及ぼす.このような空間電荷 効果が支配的な粒子ビームの挙動については,粒子シミュ レーション技術の開発[10-12]も含め,数値解析による検 討が行われている[2,6,13].

強い空間電荷効果の非線形場による反発力は、パルス圧 縮を進行方向にも半径方向にも阻害する.このため、背景 プラズマを導入し,重イオンビームの空間電荷を中和して パルス圧縮と輸送を行うスキームも検討されている[14]. ビームの電荷中和を行うことで、ビーム自身の電場による 反発力に阻害されず極端な圧縮が可能であるため、パルス 圧縮比を非常に大きくできる. また、半径方向の集束にも 空間電荷効果は反発力として働くため、ビームの電荷中和 を行うことで、より小さいスポットサイズが実現できる. しかし、電荷中和を行うと、パルス圧縮のために印加した 速度勾配がそのまま残ってしまう. 大きな速度勾配を持っ たビームバンチを最終集束系へ投入した場合、電磁石との マッチングが取れず焦点がぼけてしまい、結局は小さなス ポットサイズが実現できないことが予想される.一方で, 電荷中和しない場合は、ビーム自身の空間電荷効果が進行 方向に付けられた速度勾配を打ち消すことが期待できる. このため、うまくパルス圧縮のスケジュールを制御するこ とで、小さな速度勾配を持った重イオンビームバンチを最 終集束系へ投入することができ、小さなスポットサイズを 実現できる可能性が期待できる(図3参照).電荷中和に は一長一短があり、中性化したほうがよいか、電荷中和し ないほうがよいかは今後も議論になると考えられる.

図3 中性化パルス圧縮と非中性化パルス圧縮の比較.

5.2.4 実験的研究計画の例

米国 Lawrence Livermore National Laboratory (LLNL) と Lawrence Berkeley National Laboratory (LBNL) では, Neutralized Drift Compression eXperiment (NDCX) [15] と名付けられた実験計画で,加速器システムの最終段につ いての研究が行われている[16]. NDCX では, かつて Advanced Test Accelerator (ATA) [17] 計画で使用されてい た誘導加速セルをリサイクルして構築され、最終段では背 景プラズマ中をビーム輸送することにより、電荷中和化が 行われる.これにより,進行方向パルス圧縮が強力に行わ れる.数値シミュレーションによる検討だけでなく,実験 的にも電荷中和によるイオンビームの急激なパルス圧縮が 可能であることが確認されている[14]. NDCX ではソレ ノイド電磁石による半径方向収束が採用されているため, 背景プラズマの導入により進行方向のバンチングだけでな く、半径方向の集束も容易となり、小さなビームスポット サイズが実現されている.

NDCX では背景プラズマによるイオンビームの中性化 圧縮・集束だけではなく,さらに数nsにバンチングしたイ オンビーム照射による Warm Dense Matter (WDM) 生成 実験も検討されている.次節で述べるように,このWDM と重イオンビームの相互作用,特に阻止能の温度・密度依 存性はNDCX計画の実験に密接な関係があり,今後も継続 すべき重要な研究課題の一つと考えられる.

5.3 標的との相互作用

5.3.1 重イオンビームによる標的へのエネルギー付与

ICF でも,前章の米国の WDM 実験でも,コストの高い 重イオンビームをわざわざドライバーに用いるメリット は,標的の状態をあまり気にしなくても大体予定どおりの 体積加熱ができる点に尽きる.よって,もしエネルギード ライバーとして重イオンを積極的に広めようとする立場に いるならば,本章の主題である重イオンビーム・標的相互 作用の標的温度・密度依存性は,触れてはならない話題か も知れない.

重イオンビームと常温の固体・気体との相互作用のう ち,阻止能,飛程については,すでに膨大な実験データが 存在し,これらは体系的にまとめられている[18,19].理論 は未だ完全でないにせよ,実測値を補間するのに十分な精 度に達しており,きわめて特殊な場合を除けば一般的な応 用,すなわち放射線遮蔽,半導体製造におけるイオン注入, 重粒子線によるガン治療等に対応するビーム・標的に関す るデータは完備しているといってよい.もし標的が多くの 種類の元素から成る複雑な化合物であっても,ブラッグの 加法則を使えば,単体標的に関するデータを用いて簡単に 概略値を計算できる.

一方,同じ元素でも固相と気相では阻止能が少々異なる こと[20,21],あるいはブラッグの加法側が厳密には成立 しないこと等は古くから知られている.しかし,これらに ついても例えば結合エンタルピーを用いて化学的・物理的 に状態の異なる標的の阻止能を評価することも提案されて いる[22].よって常温標的にエネルギーが投入され,高 温・高圧の状態になれば、阻止能や飛程が多少とも変化す ることは容易に想像できる.

本章ではプラズマや WDM 等,高エネルギー密度状態に ある標的物質中の重イオンの阻止能や飛程が議論の対象と なる.これらの標的もその電子状態が特異な物質の一種で あり,質的に特に変わったことはない.ただし,応用上は ビームによる加熱の間に,膨張・蒸発・圧縮も起るので, 化学状態だけでなく温度,密度が何桁も変化する状況を適 切にモデル化して扱い,できれば実験データを添えて提供 せねばならない.

高電離プラズマでは電子のほとんどが文字どおり自由電 子であるため、入射イオンからのエネルギー移行の機会が 増え、クーロン対数が増える.また、入射イオンにとって 標的中の自由電子を捕獲することは、束縛電子を捕獲する ことに比べて難しい、よって高電離プラズマ中では相対的 に入射重イオンの荷電状態, すなわち有効電荷も増加す る.これらの理由により、低密度で高温のプラズマ中では、 等価な常温のガスに比べて阻止能が大きく上昇する. 一 方,WDM は高密度ゆえに温度の割に電離度が低いので、 上記の効果は抑制される. 逆に密度が上がって縮退が始ま れば、パウリの排他律により入射イオンから電子への運動 量移行が抑制されるため、阻止能は減少する方向にある [23].よって WDM 中の阻止能が等価な常温標的に比べて どのように変化するは興味深い研究課題である. ICF でも 最近米国で提案されている X ターゲット[24]等, 高速点火 の場合は、圧縮された高密度標的との相互作用データが必 要になるので、厳密には WDM に類似の取り扱いが必要に なるかもしれない.

なお,阻止能には標的中の電子へのエネルギー付与に相 当する部分(電子的阻止能)の他,核の運動エネルギーと して付与される部分(核的阻止能)があるが,核的阻止能 は入射重イオンのエネルギーが非常に小さい領域でのみ支 配的となるため,本章では電子的阻止能に議論を絞る.ま た,巨視的な入射イオンの集団であるバンチがプラズマ中 で波動を誘起するような巨視的効果についても数値シミュ レーション研究等がある[25]が,未だ標的設計との関係が 議論される段階にはなく,また広い意味でのビーム力学に 相当するので,ここでは割愛した.主に以前のレビュー [26]以降の当該分野における研究の進展と現状について述 べる.

5.3.2 重イオンビーム・高温高密度標的相互作用に関す る最近の研究動向

当該分野の実験的研究については、1990年から2000年代 に主に高電離水素プラズマ標的中の阻止能測定実験が大き く進展した以降,近年これといった目覚ましい進歩はみら れない.理論的研究に関しては,取り扱いの比較的容易な 高電離プラズマとの相互作用から,より複雑な系に移り, 例えば強結合プラズマ中の阻止能[27]等,興味は高密度標 的に移った.しかし,その発生と評価が困難であるため, 実験はほとんど行われず,専用の標的の開発と予備的な阻 止能測定に終わった感が否めない[28-31].少なくとも再 現性のある体系的なデータは得られておらず,断片的で結

果の解釈も完璧ではない.

米国では1980年代以降, 重イオン ICF に関わる活動が加 速器の開発に絞られたため, ビーム・プラズマ相互作用実 験は近年まったく行われていない.

ドイツでは Darmstadt の重イオン研究所(GSI)が当該分 野の唯一の研究機関である. ロシアもこの GSI との密接な 協力の下,一体となって研究を進めている.1980-2000年 代に行われた高電離プラズマ標的を用いた実験が一段落 し、テーマは後で述べる大型加速器を使った WDM 発生技 術の研究にシフトしている.一方,レーザー生成高密度炭 素プラズマ中の阻止能測定[32]にも成功する等,基礎実験 は継続している. 最近では軟 X 線で加熱した固体密度プラ ズマ標的との興味深い相互作用実験も行われている[16]. しかし、GSI の加速器から得られる重イオンのエネルギー が高過ぎて、標的の電子状態の違いが阻止能に大きく影響 を与えるいわゆるブラッグピーク周辺から大きく離れてし まうのが惜しいところである.標的が固体密度に近いプラ ズマの場合、高密度に起因する複雑な荷電変換過程を考慮 して実験データの分析を行う必要があるが、これについて も今のところ統一的な方法はない.

フランスでは2000年頃以降,実験的研究はストップして いる.しかし Orsay のグループを中心に理論的研究は依然 として活発で,レーザー場や強磁場中のビーム・標的相互 作用,多成分プラズマ中の阻止能,縮退電子気体によるイ オン散乱等の研究[16]がある.また,スペイン,イタリア 等のグループとも密接な協力関係にある.

重イオン慣性核融合については、隔年で国際シンポジウ ムが開催されており、2008年には東京工業大学原子炉工学 研究所の主催により我が国で開催された[33]. 直近の2012 年8月に米国バークレーで開催された第19回では、ビー ム・標的相互作用そのものの研究発表は、理論計算を含め ても3件のみであった [16]. ドイツからはGSIグループに よる"Experimental Investigation of Heavy Ion Energy Loss in dense Plasma, Generated by Laser Induced Soft X-rays"の 発表があった.大型レーザーで軟 X 線を発生し、それを用 いて炭素箔を加熱して固体密度のプラズマを発生し、その 阻止能を測定する大がかりな実験である. 常温標的との違 いが観測されたが、今後高密度標的に対する阻止能データ 解析手法の進展が期待される.フランスからは"Stopping of Heavy Ion Beams in Dense Plasmas of ICF and WDM Concern"と題する発表があった.主に誘電応答関数理論に基 づいて縮退した電子気体中での入射イオンの散乱や二成分 イオン系ターゲット中のエネルギー損失の詳細を論じたも ので、実質的にはここ数年の Orsav のグループによる研究 のレビューである. 我国からは"Numerical Study of Heavy-Ion Stopping in Foam Targets with One-Dimensional Subcell-Scale Hydrodynamic Motions"の発表があり、以下 に述べる WDM 実験で予定されているフォーム状標的中の エネルギー損失を、一次元流体運動と結合して計算した研 究である.一方,中国からは、ビーム・標的相互作用その ものに関する実験や計算結果の発表はなかったが、研究計 画が発表された.

5.3.3 WDM 発生実験と阻止能データ

WDM の状態方程式を調べるための方法として,高密度 標的を瞬時に一様に加熱し,その後の流体的振る舞いを詳 細に観察し,逆問題的に状態方程式を導出する方法が提案 されている[34].シンクロトロンで得られる数百 MeV/u の重イオンビームを用いれば,厚い固体標的に比較的一様 にエネルギーを付与することが可能である.しかし高コス トであり,現時点で実験施設は巨大なシンクロトロンと ビームを蓄積・圧縮して短バンチを生成できる特殊な設備 を有する GSI に限られる.CERN のLHC を利用するアイデ ア[35]も提案されている.

一方,はるかに小型で低コストの施設を用いて実験試料 としてのWDMを発生し、高エネルギー密度科学分野の ユーザーに提供するための方法として、ブラッグピークに 相当するエネルギーの入射イオンを利用するシナリオがあ る.図4の上のグラフのように、もし固体Al標的にNa イオンを照射し、エネルギー付与密度を±2.5%で一様にし ようとすれば[34]、ブラッグピーク周辺の阻止能データ [19]により、入射エネルギーを1.3 MeV/uにすればよ い.このとき、出射エネルギーは自動的に0.33 MeV/uとな り、標的の厚さは8.3 ミクロンである.エネルギー効率(エ ネルギー付与/入射エネルギー)は75%に達し、かなり効 率が高いことがわかる.しかし、これでは標的が薄すぎて、 照射中に希薄波が厚さ全体に伝搬してしまい、ユーザーに 提供する試料としては価値がなくなる.このエネルギー付 与プロファイルを保ったままでこの問題を解決するには、

図4 (上)SRIM データ[19]を用いた AI 標的中のエネルギー付与 分布.(下)固体の1%の密度の AI 標的中の Na イオンの阻 止能の温度依存性.

フォーム状の標的を用いるしかなく,瞬間的な加熱で固体 密度のWDM標的を発生するという理想からはやや離れる ことになる.上の場合,固体密度の1/100程度にすれば,照 射中の希薄波の伝搬を厚さの数分の一程度にすることが可 能である.それでも実験用のWDM 試料として厚みは 1 mm もなく,可能な実験はかなり限定されてしまうと考 えられる.

ところで,ブラッグピークの位置は標的内電子の速度と 深く関係しているので,加熱・膨張により標的の電子状態 が変化すればブラッグピークの位置も変わってしまう.し かし,前に述べた方法で状態方程式を調べる場合は,ビー ム照射によるエネルギー付与密度分布が不確定であると, 評価の精度は下がってしまう.これがブラッグピークを用 いる本方式の潜在的問題点である.

実際,広範囲の入射エネルギーを統一的に取り扱える計 算方法として,温度依存の誘電応答関数理論[36]を用いブ ラッグ曲線の温度依存性を調べると,図4の下のグラフの ようになる.結果の精度には議論が必要であるが、少なく とも阻止能の温度依存性を考慮すると照射中の標的内エネ ルギー付与分布が変化し、引き続いて起る流体運動にも影 響が出ると考えられる.ただし、LBNL/LLNLで計画中の WDM発生実験[37]では、当面標的温度が1eV程度である ので、実験の設計に常温標的のデータを用いても、ほとん ど影響は出ないと考えられる.

一方,前述の GSI のように高エネルギー重イオンを用い れば,入射イオン速度が標的内の電子速度よりはるかに大 きく,阻止能が標的の温度・密度,すなわち電子状態にあ まり依存しないので,不確定性は少ない.

5.4 おわりに

実機スケールの重イオンビームを用いた進行方向パルス 圧縮の実験的研究はそのコスト的な観点から実施すること は困難である.一方で,電子を用いてパラメータのスケー ルを合わせた模擬実験については,はるかにコンパクトで 格安な装置を準備することが可能である.近年,重イオン 慣性核融合のための重イオンビームを電子で模擬したコン パクトな装置を用いたビーム圧縮の実験が,東京工業大学 [38]や金沢大学[39]で行われ始めている.東京工業大学の グループではよく波形制御された誘導加速モジュールを用 いた実験装置[40]を,金沢大学ではMalmberg-Penning trapを応用した非常に再現性・制御性のよい実験装置[41] を用いて,数値シミュレーションと合わせた共同研究[42] が進んできている.

重イオンビーム・高温高密度標的相互作用のデータは ICF や高エネルギー密度科学の研究に必要であるが、一方 で研究対象としては、それが等価な常温物質と明確に異な る場合に特に興味深い.この点で、WDM 中の阻止能につ いては、特にブラッグピーク周辺のエネルギーでは理論的 取り扱いや実測が困難であることに加え、高温で希薄なプ ラズマで起こる有効電荷の大幅な上昇がないため等価常温 標的とさほどの違いが予想されないので、少なくとも手軽 に始められるテーマではない.直接の関係はないが、複雑 で困難な WDM 標的に対する実験の前段階として,電離の 一歩手前である原子に解離した水素標的の阻止能を測定し ようとする試みもある[43].

WDM 研究者からみれば重イオンは手段の一つに過ぎな い. 今後 X 線レーザーによる加熱技術 [44] が発展すれば, 加熱の一様性,発生できる WDM 試料の厚み等の観点 で,重イオンの立場は非常に難しくなることが予想され る.本章で述べたブラッグピークを用いた方法を何とかし て実用化し,コストで勝負するしかないかも知れない.

ビーム・高温高密度標的相互作用は、片方が単一の粒子 であるにせよ、基本的には多体相互作用であるので、どこ まで精密化しても切りはない.これは常温標的についても 同じである.国際協力の下、海外の関連プロジェクトの動 向を配慮しながら実験と理論的研究をバランスよく進め、 装置設計にフィードバックする方向をこのまま続けるしか ないであろう.次回2014年の重イオン ICF 国際会議は中国 での開催が内定している.中国のグループは GSI との研究 交流を密にしているので、次回会議までの研究の進展が大 いに期待される.

参 考 文 献

- [1] C.H. Kim *et al., AIP Conf. Porc.* **152** (American Institute of Physics, New York, 1986) p.264.
- [2] D.D.-M. Ho et al., Part. Accelerators 35, 15 (1991).
- [3] E.P. Lee and J.J. Barnard, Laser Part. Beams 20, 581 (2002).
- [4] M.J.L. de Hoon et al., Phys. Plasmas 10, 855 (2003).
- [5] H. Qin and R.C. Davidson, Phys. Rev. STAB 5, 034401 (2004).
- [6] W.M. Sharp *et al.*, Nucl. Instrum. Methods Phys. Res. A 544, 398 (2005).
- [7] J. Barnard *et al.*, Nucl. Instrum. Methods Phys. Res. A415, 218 (1998).
- [8] S.M. Lund *et al.*, *Proc. 1999 Particle Accelerator Conf.* (IEEE, Piscataway, NJ, 1999) **3**, p.1785.
- [9] T. Kikuchi et al., Laser Part. Beams 20, 589 (2002).
- [10] J.-L. Vay et al., Phys. Plasmas 11, 2928 (2004).
- [11] R.H. Cohen *et al.*, Nucl. Instrum. Methods Phys. Res. A577, 52 (2007).
- [12] S.M. Lund et al., Phys. Rev. STAB 12, 114801 (2009).
- [13] T. Kikuchi and K. Horioka, Nucl. Instrum. Methods Phys. Res. A606, 31 (2009).
- [14] P.K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005).
- [15] A. Friedman *et al.*, Nucl. Instrum. Methods Phys. Res. A**606**, 6 (2009).
- [16] http://hif12.lbl.gov/
- [17] L.L. Reginato, IEEE Trans. Nucl. Sci. NS-30, 2970 (1983).
- [18] L.C. Northcliffe and R.F. Schilling, Atom. Data Nucl. Data Tables 7, 233 (1970).
- [19] J.F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- [20] D.I. Thwaites, Nucl. Instrum. Methods Phys. Res. B 12, 84 (1985).
- [21] P. Bauer et al., Phys. Rev. Lett. 69, 1137 (1992).
- [22] P. Bauer and D. Semrad, Nucl. Instrum. Methods Phys. Res. B 182 (2001) 62.
- [23] P.T. León et al., Phys. Lett. A 289, 135 (2001).

- [24] E. Henestroza *et al.*, Phys. Plasmas 18, 032702 (2011).
- [25] I.D. Kaganovich et al., Phys. Plasmas 17, 056703 (2010).
- [26] 小栗慶之: プラズマ・核融合学会誌 77,25 (2001).
- [27] G. Zwicknagel et al., Phys. Rep. 309, 117 (1999).
- [28] V. Mintsev *et al.*, Nucl. Instrum. Methods Phys. Res. A 415, 715 (1998).
- [29] V. Mintsev et al., Contrib. Plasma Phys. 39, 45 (1999).
- [30] K. Weyrich et al., J. Phys. A: Math. Gen. 39, 4749 (2006).
- [31] K. Katagiri et al., J. Appl. Phys. 102, 113304 (2007).
- [32] A. Frank et al., Phys. Rev. E 81, 026401 (2010).
- [33] Y. Oguri (editor), Heavy Ion Inertial Fusion: Proc. 17th Int. Symp. Heavy Ion Inertial Fusion, Tokyo Institute of Technology, Tokyo, Japan, 4-8 August 2008, Elsevier (2009).
- [34] B.G. Logan *et al.*, A Unique U.S. Approach for Accelerator-Driven Warm Dense Matter Research - Preliminary Report, UCRL-TR-208767, Lawrence Livermore National Laboratory, December 27, 2004.
- [35] N.A. Tahir et al., Contrib. Plasma Phys. 51, 299 (2011).

- [36] N.R. Arista and W. Brandt, Phys. Rev. A 29, 1471 (1984).
- [37] L.R. Grisham, Phys. Plasmas 11, 5727 (2004).
- [38] K. Horioka et al., 18th Int. Symp. Heavy Ion Inertial Fusion (HIF2010), Darmstadt, August-September 2010, TUS-0404
- [39] 朴 英樹 他: to be published in NIFS Proc.
- [40] A. Nakayama *et al.*, Longitudinal Bunch Compression Study with Induction Voltage Modulator", Inertial Fusion Sciences and Applications 2011, accepted by EPJ Web of Conferences.
- [41] Y. Soga et al., Phys. Plasmas 13, 052105 (2006).
- [42] T. Kikuchi *et al.*, "Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion", Inertial Fusion Sciences and Applications 2011, *accepted by* EPJ Web Conf.
- [43] J. Hasegawa *et al.*, Nucl. Instrum. Methods Phys. Res. A 606, 205 (2009).
- [44] S.M. Vinko et al., Nature 482, 59 (2012).