Special Topic Articles

Numerical Simulations of Space Environment and Spacecraft Charging for Preventing Spacecraft Accidents due to Charging

1. Introduction ................................................................. MIYAKE Hiroaki and MURANAKA Takonobu 81
2. Forecast of the Plasma Environment in the Geostationary Orbit Using the Magnetoospheric Simulation ................................................................. NAKAMURA Masao 83
3. Numerical Analysis of Spacecraft Charging
   3.1 Theory and Numerical Modeling of Spacecraft Charging ......................... MURANAKA Takonobu 87
   3.2 Outline of Multi-Utility Spacecraft Charging Analysis Tool (MUSCAT) • HATTA Shinji and KIM Jeongho 92
4. Analyses of Electron Trajectories and Accumulated Charge Distributions in Spacecraft Materials ................................................................. YASUDA Masaaki and WATANABE Rikio 96
6. Conclusion ................................................................. MIYAKE Hiroaki 105

Lecture Note

Construction and Use of Atomic and Molecular Databases
3. Construction of Atomic and Molecular Databases
................................................................. MURAKAMI Izumi, KATO Daiji, KITAJIMA Masashi, SAKAUE A. Hiroyuki and IMAI A. Makoto 107

Lecture Note

Research Trends on Biological Effects of Tritium
1. Biological Effects of Low Dose Radiation and Tritium Biology
................................................................. TAUCHI Hiroshi, UMATA Toshiyuki and TACHIBANA Akira 119

Contributed Papers

Generation of Liquid-Cathode Atmospheric Microdischarges by Applying Pulsed Voltages to a DC Discharge
................................................................. KIKUCHI Jun, MUTO Takaaki, IBUKA Shinji and ISHII Shozo 125

PFR Abstracts

Information ................................................................. 132

Plasma & Fusion Calendar ................................................................. 133

Announcement ................................................................. 145

Cover

Scientific visualization of the time-sequence particle-simulation data on magnetic reconnection by the CAVE virtual reality system "ComplexScope" at National Institute for Fusion Science $\theta_{B_i} = (a) 40.1, (b) 41.8, (c) 43.6$. Time is the simulation time. Time evolution of the magnetic field lines (blue lines), the reconnection component of magnetic field (color contour on $yz$-plane), and the ion temperature (color contour on $xy$-plane) is shown. Ions coming from the upstream boundary at $t_{\omega_i} = 40.1$ execute a meandering motion (time-tracing white lines) around the magnetic neutral sheet, and move toward the downstream boundary, (Nobuaki OHNO et al., Plasma and Fusion Research Vol. 7, 1401001 (2012) http://www.jspfurp.jp/PFR/)

Published Monthly by
The Japan Society of Plasma Science and Nuclear Fusion Research
3-1-1, Uchihama, Chikusa-ku, Nagoya 464-0075, Japan
Tel 052-735-3185, Fax 052-735-3485, E-mail plasma@jspfurp.jp, URL http://www.jspfurp.jp/