

研究技術ノート

FPGA を用いたパルスパワーの電圧制御

 秋山雅裕,坂本達朗²⁾,高橋克幸³⁾,上野崇寿⁴⁾, 佐久川貴志²⁾,秋山秀典²⁾
一関工業高等専門学校,²⁾熊本大学,³⁾シシド静電気(株),⁴⁾大分工業高等専門学校 (原稿受付:2010年12月1日/原稿受理:2011年8月31日)

様々な分野でパルスパワーを用いた研究は行われており、パルスパワー発生装置には高度な制御が求められ るようになってきた.その1つとして、パルスパワーの出力電圧の制御があげられる.本研究では、磁気パルス 圧縮(Magnetic Pulse Compression: MPC)回路方式パルスパワー発生装置にプログラミングによる制御が可能な FPGA(Field Programmable Gate Array)を組み込み、パルスパワーの出力電圧制御を行った.重要なパラメー タである出力電圧を制御することで、水質浄化、オゾン生成、細胞の分化制御など、幅広いパルスパワー応用研 究につながり、さらには産業創生が期待される.

Keywords:

Pulsed Power, FPGA, MPC, Electric discharge in water

1. はじめに

パルスパワーを用いた研究は多く,次世代半導体リソグ ラフィー用極端紫外光輻射のための高エネルギー密度プラ ズマ生成[1],極短パルスを用いた窒素酸化物の処理[2], シイタケ栽培等食品へのパルスパワー利用[3,4],液中放 電における加圧の化学反応や放電への影響[5],医療応用 などのバイオエレクトリクス[6]などの研究が盛んに行わ れている.

パルスパワー発生装置の研究に目を向けると、半導体開 放スイッチを用いたパルス高電圧発生装置開発[7],BJT (Bipolar Junction Transistor)の降伏現象を用いたミニ チュアマルクス発生装置開発[8],IGBT (Insulated Gate Bipolar Transistors)とMPC (Magnetic Pulse Compression)回路方式を用いたパルスパワー発生装置の開発と出 力波形へのピーキングコンデンサや負荷の影響調査[9], パルス幅と極性可変のブルームラインパルス発生装置開発 [10]などが行われている.

様々な分野でパルスパワーを用いた研究が盛んになるに 伴い,パルスパワー発生装置の高度な制御が求められるよ うになってきた.FPGA (Field Programmable Gate Array) をパルスパワー発生装置に導入することにより,コンパク ト化及び仕様変更時の柔軟性向上[11],FPGAを用いた MPC 回路方式パルスパワー発生装置のシステム制御とパ ルスの出力タイミング制御[12]等の高度な制御が研究され ている.小型化や出力タイミングの制御だけではなく,さ らなる高機能化が求められており,その中でも重要な制御 としてショット毎の出力電圧可変があげられる. 本研究では,FPGA を用いてパルスパワーの出力電圧を ショット毎に制御できる MPC 回路方式パルスパワー発生 装置を開発した.また,高繰り返し動作中の出力電圧を1 ショット毎に変更したパルスパワーを水中放電に適用し, 高速度カメラを用いて放電の様子を観測した.本研究成果 は,パルスパワーを用いた大気圧放電プラズマ,液中放電 プラズマ,超臨界流体中放電プラズマの生成やパルス電界 のバイオへの作用等の研究に対して,これまで出来なかっ た新しい研究領域を提供する.例えば,水中放電プラズマ では,一定の印加電圧においてパルスパワーの繰り返し周 波数が低い場合はストリーマ状放電プラズマが生成される が,周波数が高くなってくると,電極先端に気体領域が形 成され気体内の放電プラズマとなる[13].電圧をショット 毎に変えることにより,この二つの放電プラズマ形態の制 御が可能となる.

FPGAを用いた電圧可変型MPC回路方式パル スパワー発生装置の開発

MPC 回路方式パルスパワー発生装置の電圧制御をする ためには、ロジック ICを用いた既存のコントローラでは回 路が複雑になり、かつ柔軟性がないため、FPGA を用いて 作成した.本研究で使用している FPGA の開発環境は下記 である.

FPGA ボード:ヒューマンデータ社 XC3S200-4VQG100C FPGA:Xilinx社 Spartan-3 XCM-301-200 開発言語:Verilog HDL 開発ツール:Xilinx社 ISE Design Suite 12.1 ダウンロードケーブル:Xilinx社 HW-USB-G

Voltage Control of Pulsed Power using FPGA

AKIYAMA Masahiro, SAKAMOTO Tatsurou, TAKAHASHI Katsuyuki, UENO Takahisa, SAKUGAWA Takashi and AKIYAMA Hidenori

corresponding author's e-mail: akiyama@ichinoseki.ac.jp

FPGAの導入により小型化も実現し,ロジックICを用いた既存のMPCコントローラの容積の約4分の1となった. 図1に FPGA 組み込み型の MPC コントローラを示す.

2.1 ハードウェア構成

パルスパワー発生装置は、図2に示すように、MPC 回路 方式パルスパワー発生装置,直流高電圧充電器(TDK LAMBDA 社 152A-1.5 KV-POS),MPC コントローラで構 成されている。MPC コントローラの電圧制御部には、 FPGA 及び DA コンバータ(ANALOG DEVICES 社 AD 7224)を用いている。FPGA からの制御電圧用デジタル信 号を DA コンバータからなる電圧制御回路で制御電圧用ア ナログ信号に変換して、充電器に信号を送っている。充電 器制御では充電器のオンとオフを制御している。

MPC 回路方式パルスパワー発生装置の回路図を図3に 示す.パルスパワーの出力電圧の制御は,初段のコンデン サを充電する充電電圧を制御電圧によって変えることで実 現させている.充電器には0~10 Vの制御電圧で0~1.5 kV の充電電圧を制御するポートがあり,0~10 V は DA コン バータで作成している.パラメータ表示用に液晶ディスプ レイ (Sunlike Display Tech 社 SC2004CSLB)を使い,マ イクロコントローラ (ATMEL 社 ATmega328P)が搭載 された ArduinoNano3.0 で制御を行っている.

図1 FPGA 組み込み型 MPC コントローラ (a: FPGA, b:液晶 ディスプレイ用マイクロコントローラ, c:液晶ディスプ レイ, d:DA コンバータ, e:フォトカプラ, f:24 V DC 電源, g:DC-DC コンバータ用ヒートシンク, h:FPGA 出力のレベルシフタ).

図2 パルスパワー発生装置の構成.

2.2 電圧制御システム

FPGA は,繰り返し周波数,充電時間,トリガ信号,パ ルスパワー発生回数のカウントなどの既存制御に加え, DA コンバータの出力電圧の制御を行う.図4にパルスパ ワー発生までの信号列を示す.

任意に設定した繰り返し周波数(図4では500 Hz 設定時)において,波形の立ち上がりから初段のコンデンサを 1.5 msの間充電する.充電電圧はDAコンバータからの制 御電圧で決まる.その後,トリガ信号をオンすることでパ ルスパワーが出力される.これらの制御システムにより, パルスパワーの出力電圧を制御している.パルスパワー発 生装置内素子の温度が60℃以上の場合,接点式の温度セン サー(NECトーキン社 OHD3-60M)がオンとなり,温度異 常信号が FPGA に送られ,充電器がオフとなる.いくつか の充電電圧パターンを FPGA に書き込み,プッシュスイッ チによって,パターンを選んでいる.

3. 電圧制御を用いた水中放電プラズマの生成

本研究で開発した電圧制御を用いて水中放電プラズマを 生成した.高繰り返し動作中の出力電圧を1ショット毎に 制御した.

3.1 実験環境

図5にリアクタの概略図を示す.開発した電圧可変型 MPC回路方式パルスパワー発生装置を水中に置かれたス テンレスの棒電極(直径0.5 mm)に印加し,水中でスト リーマ状の放電を生成した.棒電極は先端を除いてプラス

チックで絶縁されている.アース電極として,ステンレス の板が容器の底に置かれている.容器は100×100×100 mm とし,水道水(導電率180 μS/cm)を60 mm まで入れ,棒 電極とアース電極間の距離を40 mm とした.放電の観測に は高速度カメラ(キーエンス VW-6000)を使用し,フレー ムレート500フレーム/秒および露光時間2 ms で撮影した. 3.2 電圧制御を用いた水中放電プラズマ

パルスパワー発生装置の初段コンデンサを 1.35 kV と 750 V の電圧で交互に充電し、パルスパワーの出力電圧を 1 ショット毎に変更した.繰り返し周波数は 250 pps (pulses per second) とした.図6 に電圧制御時の充電電圧波形を示 し、図7(a)に充電電圧 1.35 kV の出力電圧・電流波形, 図7(b)に充電電圧 750 Vの出力電圧・電流波形を示す.充 電電圧 1.35 kV 時のピーク電圧は 34 kV,750 V 時のピーク 電圧は 22 kV が出力された.

図8に電圧制御を用いた放電の様子を示す.500フレーム/秒で撮影された動画を1フレーム毎に切り取った写真であり,充電電圧1.35 kV時の放電,放電なし,充電電圧750 V時の放電,放電なしの順に繰り返していることが分かる.これらの結果から,パルスパワーの柔軟な電圧制御が成功したといえる.また,MPCコントローラは,パルスパワー発生装置や負荷からのEMI(Electromagnetic interference)ノイズに敏感であるため、トリガ信号とFPGA間を電気的に絶縁すること、コントローラをシールドボッ

クスに入れること,素子や配線のレイアウトに気を付ける こと,及びノイズの継続時間を考慮して FPGA のソフト ウェアを工夫する等の対策を行っている.

図7 出力電圧・電流波形(a)充電電圧 1.35 kV, (b)充電電圧 750 V.

図8 電圧制御時の水中放電の様子.

4. まとめ

パルスパワーの出力電圧を柔軟に制御できる MPC 回路 方式パルスパワー発生装置を開発した.制御部には FPGA を用い,複雑な制御がプログラミングによって実現した. 部品数も減らすことができ,既存の MPC コントローラの 容積の約4分の1まで小型化できた.本研究で開発した装 置を用いて,水中放電で1ショット毎に印加電圧を変化し た.電圧電流波形と高速度カメラの動画から,高繰り返し 動作中でパルスパワーの柔軟な電圧制御が成功したといえ る.

パルスパワーの重要なパラメータである出力電圧を制御 することで、幅広い応用研究につながると考えられる.ま た、これらの研究は、パルスパワーの産業応用にも寄与す ると期待される.

謝 辞

この研究の一部は、グローバル COE プログラム「衝撃エネ ルギー工学グローバル先導拠点」、および科学研究費補助 金(基盤研究(A)) によってサポートされた.

参考文献

[1] 勝木 淳, 秋山秀典:応用物理 7,375 (2008).

- [2] T. Matsumoto, D. Wang, T. Namihira and H. Akiyama, IEEE Trans. Plasma Sci. **38**, 2639 (2010).
- [3] 塚本俊介,前田貴昭,池田元吉,秋山秀典:プラズマ・ 核融合学会誌 79,39 (2003).
- [4] 高木浩一: 電気学会論文誌 A 130, 963 (2010).
- [5] K.Y. Shin, R. Burlica, W.C. Finney and B.R. Locke, IEEE Trans. Industry Appl. 45, 630 (2010).
- [6] K. Schoenbach, S. Katsuki, R. Stark, E.S. Buescher and S.J. Beebe, IEEE Trans. Plasma Sci. **30**, 293 (2002).
- [7] 江 偉華: 電気学会論文誌 A 130, 538 (2010).
- [8] 上野崇寿, 佐久川貴志, 秋山雅裕, 浪平隆男, 勝木 淳, 秋山秀典:静電気学会誌 32, 216 (2008).
- [9] D. Wang, J. Qiu and K. Liu, IEEE Tans. Plasma Sci. 38, 2633 (2010).
- [10] A. Andrea, K. Juergen, Z. Luigi and K. Schoenbach, Rev. Sci. Instrum. 79, 044301 (2008).
- [11] 秋山雅裕, 猪口 誠, 佐久川貴志, 秋山秀典, 上野崇寿, 末松謙一, 甲田 忠: プラズマ・核融合学会誌 85,631 (2009).
- [12] M. Akiyama, T. Sakugawa, S.H.R. Hosseini, E. Shiraishi, T. Kiyan and H. Akiyama, IEEE Trans. Plasma Sci. 38, 2588 (2010).
- [13] 上野崇寿, 廣野佳那子, 秋山雅裕, 秋山秀典, 佐久川貴 志: 電気学会論文誌 A 130, 567 (2010).