

プロジェクトレビュー プラズマーバイオ融合科学への新展開

5. パルス高電界の生体作用と先端的医療応用

勝木 淳,矢野正彦¹⁾,光武和典¹⁾,諸冨桂子,安部恵祐¹⁾,矢野憲一,秋山秀典¹⁾ 熊本大学バイオエレクトリクス研究センター,¹⁾熊本大学大学院自然科学研究科

(原稿受付:2011年8月18日)

Keywords:

bioelectrics, PEF, electroporation, stress response, apoptosis, cancer treatment, platelet activation

5.1 はじめに

電気ショックの生体作用に関する議論の発端は18世紀の ファラデーの時代に遡る[1]. その後, 19世紀末に犬の心 室細動を電気ショックによって停止させる実験が行われ た. 1947年には初めて人体に電気ショックが使用され、今 日の自動除細動装置,いわゆる AED (Automated External Defibrillator) につながっている。その他、今日では精神疾 患の治療法としても利用されている.これら従来の電気 ショックは神経刺激に基づいており、生体に不可逆的な変 化を与えるものではない.このため,瞬時電力は除細動で 用いられる比較的強い電気ショックでも高々1kW 程度で ある.一方,時間幅1µs以下でかつ瞬時電力1 MW以上の, いわゆるパルスパワーは、1960年頃から非加熱電界殺菌 [2]やエレクトロポレーション[3]のように、細胞膜の構造 を強制的に変化させるための手段として用いられてき た.21世紀に入り、パルスパワー発生装置の高性能化と生 体分析技術の飛躍的な進歩によって、 パルスパワーの生物 応用が新しい展開を見せている.パルスパワーは、誘電物 質の集合体である生体内において強力な電磁力として細胞 を構成する部位に作用し、その構造・機能の変化をもたら す. さらに、ストレス応答などの二次的な生体反応を誘導 する.しかも、パルスパワーの適用条件を調節してストレ スを変化させることによって、多様な生体応答を引き出す ことが可能である.このような物理ストレスで誘導される 生体反応は、がん治療[4,5]や創傷治療[6]などの医療応用 のほか、美容分野への応用も検討されている.パルスパ ワーの対象は動物細胞にとどまらず、植物の発芽促進や成 長制御[7-9], 品種改良[10]のための物理刺激としても利 用されている.このパルスパワーを生物に利用する分野を バイオエレクトリクス (Bioelectrics) と呼び, 2004年以降 単独で毎年国際会議が開催されるほど活発である.本章で は、パルス高電界の生体作用と医療分野への応用に絞って 最新の研究を紹介し、今後の展開についてもふれる.

5.2 パルス高電界の生体への物理作用

5.2.1 パルス電界の生体一次作用

細胞は,核,小胞体,ミトコンドリア,などのオルガネ ラ,核酸やタンパク質といった巨大生体分子,アミノ酸な どの低分子,金属イオン,それに媒質としての水分子から 成る.これらはみな誘電物質であるがゆえ,強電界下では 電気的・機械的なストレスを受ける.さらに,構造,分極, 電気抵抗,粘性などの違いから,それぞれが受けるストレ スは異なる.強電界の生体作用を考える上で2つの重要な メカニズムがある.最も重要なのは約8nmと薄く物質の 透過性を能動的に制御する生体膜の存在である.生体膜は 受動的な荷電粒子の流れを遮断するので,細胞内外の電 界・電流分布に及ぼす影響は極めて大きい.外部電界に対 する細胞膜の役割を理解するために,図1のような細胞単 純モデルに狭帯域の交流電界を印加した場合の電界分布を

図1 生体細胞の単純モデルおよび外部交流電界下の電界分布 (模式図). E₀, E_m, E_{in} はそれぞれ印加電界, 細胞膜上およ び細胞内部の電界. r_m は細胞の半径, f₀ は外部電界の周波 数.

5. Biological Effects of Intense Pulsed Electric Fields and Their Advanced Medical Applications KATSUKI Sunao, YANO Masahiko, MITSUTAKE Kazunori, MOROTOMI-YANO Keiko, ABE Keisuke, YANO Ken-ichi and AKIYAMA Hidenori

corresponding author's e-mail: katsuki@cs.kumamoto-u.ac.jp

Project Review

考える.相対的な関係から、細胞膜は絶縁膜、細胞内部お よび外部は導電性媒体とみなせる。細胞の直径を15 µm, 細胞膜の静電容量を1 µF/cm²,細胞内および懸濁液の導電 率を 100 Ωcm として電界を計算すると[11], 周波数 100 kHz 程度以下では細胞膜上の電界は外部電界の約1000倍に達す る.このとき、細胞内電界はほとんどゼロである.周波数 を大きくすると膜のインピーダンスが小さくなって細胞内 部に電流が流れこむようになり、10 MHz を超えると細胞 内電界は外部と同程度になる. 図2は,振幅3kV/cm,持 続時間200 µsのバースト交流電界に曝したヒト子宮頸がん 細胞(HeLa細胞)の顕微鏡写真である[12]. 周波数 300 kHz の場合,細胞膜が壊れて内部物質が漏れ出してい る. 一方, 10 MHz では一見膜の損壊は見られないが, コン トロールと比べると内部構造が際立って見える. さらに 100 MHz の場合,細胞膜は壊れないまま一部の細胞が膨潤 化しており、明らかにコントロールとは異なる細胞内反応 が起こっていると推察される.以上の議論では細胞膜につ いて述べたが、同様の膜で覆われる核、小胞体、ミトコン ドリアなどの細胞内オルガネラでも、周波数領域は異なる ものの同様の現象が起こると考えられる.

2番目の生体作用は核酸やタンパク質などの生体高分子 への物理ストレスである.生体分子は概して負に帯電し, しかも分子中で電荷が局在しているので,強電界下では結 合した分子間や分子内ユニット間に静電的な強いストレス が生じる.このストレスは,条件によっては分子構造の変 化をもたらす.鷲津ら[13]や金子ら[14]が1kV/cm程度の 高周波電界を用いて液中で DNA 伸縮の操作を行っている ことや,Schoenbach らがパルス電界によってアルツハイ マー病の原因物質と見られているβアミロイドファイバー を粉砕している[15]こと等から,強電界が生体分子にとっ て重大なストレスとなることがわかる.さらに,分子それ ぞれの外部電界に対する応答時間(誘電緩和時間)が異な ることから,特定周波数の振動電界を与えることによって

(a) Control

(b)300 kHz

(c) 10 MHz

(d) 100 MHz

図 2 バースト交流電界(3 kV/cm, 200 μs)を印加したヒト子宮 頸がん細胞(HeLa 細胞)の顕微鏡写真[12](パルス印加10 分後に撮影.細胞の直径は約15 μs). 部位選択的にストレスを付与することが可能である.

5.2.2 細胞内ストレス反応

外部から与えられた化学または物理ストレスは細胞に何 らかの構造変化をもたらし、この変化をきっかけに、生存 および細胞死を導く様々なタンパク質の連鎖反応(シグナ ル伝達)が起動する.結局、細胞の生死は生存シグナルと 細胞死シグナルのバランスによって決定される.したがっ て、ストレスの種類や強さを適当に調節することによっ て、細胞を死に導くことができ、逆に、生存シグナルを優 位にして細胞を活性化させることも可能である.

パルス電界の電界強度または印加回数をある程度以上に すると、動物細胞に自発的な細胞死(アポトーシス: apoptosis)を引き起こす.アポトーシスとは生物個体をより良 い状態に保つために引き起こされる能動的な細胞死であ り、古い細胞や傷ついた細胞などの個体にとって不要な細 胞は生体内で常にアポトーシスによって取り除かれてい る.しかし、多くのがん細胞は一部のタンパク質が機能せ ずアポトーシスが起こりにくい状態にある. アポトーシス は, 化学物質の他, 紫外線, 放射線などの物理刺激によっ て誘導されることは知られており、2003年以降パルス電界 によっても様々な動物細胞にアポトーシスが誘導されるこ とがわかってきた.特に時間幅が100ns以下のナノ秒パル ス電界 (nsPEF) の印加後に、ミトコンドリアの膜透過性 亢進とチトクローム C の放出, カスペースと称するタンパ ク質分解酵素の活性化、小胞体からのカルシウム放出な ど、アポトーシスに関連する反応が様々な細胞で検出され ている[16]. 図3(a), (b)は、それぞれ適当な条件のパル ス電界を印加した HeLa 細胞の顕微鏡写真,およびアポ トーシス特有の DNA 断片化現象を蛍光分子プローブ (TUNEL法)によって検出した結果である. 蛍光分子の蛍 光輝度が強いほど細胞内 DNA の断片化が進んでいること

6 hrs

図3 ナノ秒パルス高電界(12.5 kV/cm, 100 ns, 100回)による HeLa 細胞へのアポトーシス誘導.(a)パルス電界によって アポトーシスを起こした HeLa 細胞.(b)アポトーシス様 DNA 断片化を検出する蛍光分子プローブの対蛍光輝度ヒ ストグラム.(左からコントロール,パルス印加2および 6時間後の細胞).

(a)

(b)

を示す. さらに, 6時間程度でゆっくりと反応が進んでい ることもアポトーシスであることを裏付ける. 筆者らは, nsPEF によって誘導されるアポトーシスメカニズムの解 明に注力している. パルス印加後,細胞膜や小胞体に関連 する遺伝子発現の増加や,パルスによって細胞膜に生じた 小孔 (ナノポア)から流入したカルシウムイオンが細胞膜 近傍のアポトーシス関連タンパク質を活性化していること 等を突き止めており (図4),メカニズムの全貌が明らか になりつつある[17,18].

5.2.3 過渡的温熱作用

パルスとはいえ生体に電界を印加すると生体内で少なか らずジュール熱が発生する.パルスの繰り返し速度を大き くするなどして積極的にジュール加熱すると、ミリ秒から 秒単位の間に数10℃の温度変化を生体に与えることがで きる.従来は、パルス電界の非熱作用の研究が進められて きたが、温熱療法で用いられる43~45℃を数10分間維持す るような温度履歴とは異なり、パルス電界で実現可能な急 峻な温度履歴が新しい生体ストレスとして注目されてい る.この過渡的温熱作用と電界の組み合わせによって、が ん細胞に効率的にアポトーシスを誘導できることが示され ている[19].

5.2.4 細胞活性化

5.2.2節で述べたように、パルス電界の条件によっては 細胞を活性化させることも可能である[12]. 図5は、培養 しながら細胞数を自動計測する装置(xCELLigence)を用 いて得た Hela 細胞の細胞増殖曲線であり、適度な強さの バースト交流電界への暴露によって細胞の増殖速度が大き くなる例である.パラメータは交流電界の周波数である. 繰り返しパルスのインターバルは十分長いので、処理時の 温度上昇は高々7℃であり、温熱作用は無視できる.パル ス印加した細胞の増殖速度はコントロールに比べて概ね大 きいことがわかる.特筆すべきは増殖速度が周波数3 MHz で極大になることである.電界分布計算[11]から、死に至 らしめない程度の適度な電界が細胞膜に生じたときに増殖 が活発になる傾向がある.最近の遺伝子解析から、パルス 電界印加によって細胞周期に関わる遺伝子の発現量が変化 するなど、メカニズム解明のための情報が集まりつつある.

図4 nsPEF 印加後のアポトーシス関連遺伝子の発現解析結果と アポトーシス関連シグナル経路.IRE, CHOP, JNK, c-Jun, caspase3, X (未特定) はタンパク質.棒グラフは各 タンパク質をコードする遺伝子の発現量(左がコントロー ル,右がパルス印加2時間後).

5.3 医療・健康分野への応用

5.3.1 がん治療

前節で述べたように、ナノ秒パルス高電界(nsPEF)を 用いると薬剤を用いずにがん細胞にアポトーシスを誘導す ることができる.図6は、マウスの脚で成長させたメラ ノーマ(Melanoma,悪性黒色腫)をクリップ式の電極で挟 んでnsPEF処理(40kV/cm,300ns,100回)を定期的に 繰り返した場合の患部の回復状況を示したものである [4]. 左列は患部背後から照射した光の透過光,右列は表 面の様子である.この場合,日数の経過ととともにがんが 縮小し結果的に65日で完治している.メラノーマに対して は臨床実験も進んでいる[20].このように,nsPEF は一 部のがんに対して,培養細胞と組織のいずれに対しても不

(a)10時間後(3 MHz)

(b)40時間後(3 MHz)

図5 適度なバースト交流電界を印加した細胞の顕微鏡写真と増 殖曲線(t=4hの細胞数で正規化). バースト交流電界 は,振幅3kV/cm,持続時間200 µs,印加回数30回を一定と し,周波数を0.3-100 MHzの範囲で変化させた.

Complete remission by 65 d

図 6 nsPEF によるマウスメラノーマ(M116)の治療[4].nsPEF 処理(40 kV/cm, 300 ns, 100回)を0, 1, 2, 21, 22およ び23日目に実施. 左列は患部の透視像, 右列は表面の様子 である. Project Review

活化効果があることが確認されている.現在,他種のがん に対する効果が調べられている.

パルス高電界の細胞膜穿孔作用をドラッグデリバリー (Drug Delivery)として利用することも可能である.抗癌 剤を患部に経皮投与した直後に電極をあててエレクトロポ レーションを施すと薬剤は即座に患部の細胞で吸収されて 効果を発揮する.この治療法を電気化学療法(Electrochemotherapy, ECT)と呼び,欧米で臨床研究が進められてい る[5,21].

身体の深部のがんに対してパルス電界を使えるようにす るために,2つの電界印加方式が検討されている.1つ目 は内視鏡手術で用いられるような治具に電極を取り付ける などして,体内に電極を持ち込んで電界を患部に直接印加 する方法である.2つ目は,体外で発生させたパルス電磁 エネルギーを電磁反射鏡等によって非侵襲的に体内患部に 収束させる方法である.図7は回転楕円体反射鏡の第1焦 点(z=0.15 m)付近に設置したアンテナから放射された 800 MHz のパルス電磁波が第2焦点(z=0.4 m)付近に収 束する様子を表している(シミュレーション).電磁波の 整合性のため,システムは体内と同等の誘電率の液体中に 設置される.皮下脂肪による電磁エネルギーの吸収や臓器 等の体内組織の電磁特性を考慮した高度なアンテナ設計が 要求される.

5.3.2 創傷治療

nsPEF は出血を伴う創傷の治療にも効果がある. 創傷治 療とは、血小板を活性化させ生体本来の機能によって傷口 を塞ぐことである.血小板は、通常の血液中では滑らかな 表面であるが、出血時には刺激物質により多数の長い突起 を出し金平糖のような形になる (図8). 同時に新たに細 胞膜上に細胞接着因子が発現し凝集する. 血小板は血管内 皮に接着・凝集して傷口を塞ぎ、一次止血栓を形成する. その後、血小板から各種凝固因子が放出されて、血液中に あるフィブリンが凝固し、二次止血栓が形成されて止血が 完了する.nsPEF は血小板を活性化させる作用があること がわかってきた. カルシウムは血小板の活性に関わる作用 物質であり, nsPEF によって細胞膜に形成されるナノポア を通して外部から、または小胞体からカルシウムを放出さ せる[6]. 血小板に限らず皮膚組織に対しても5.2.4節で述 べた活性化作用があり、複合的な作用によって治癒が促進 されると考えられる.

5.4 まとめと今後の展望

パルスパワーはユニークな新規生物刺激法であり,その 一形態であるパルス高電界の生体作用と医療応用の一部を 紹介した.その他にも細胞分化制御などの試みが行われて いる.医療応用研究は,国際的な枠組みの中で,メカニズ ム解明・制御をめざした基礎研究と臨床などの応用の2つ の方向があり,国内では前者,欧米では主に後者が進めら れている.医療応用を進めるためには医薬系研究者と産業 界を巻き込んだ体制が不可欠である.そのために,着実な 研究成果に基づくバイオエレクトリクスの魅力を医薬業界 に訴え続けることが肝要である.

(a)不活状態(b)活性化状態図8 nsPEF 電界による血小板の活性化[6].

本章では医療分野に限定し述べたが、パルスパワーの物 理刺激は、食品、農業、漁業、環境など、生物が関わるあ らゆる分野で利用できる.現在、農業応用が最も進んでお り、パルスパワーの利用価値が広く認知されるようになっ た.他分野においても大きな可能性を秘めており、今後の 展開が楽しみである.

参 考 文 献

- [1] R. Becker, G. Selden, *The Body Electric* (William Morrow New York, 1987).
- [2] A. Sale and J. Hamilton: Biochim. Biophys. Acta 148, 789 (1967).
- [3] E. Neumann and K. Rosenheck: J. Membrane Biol. 10, 279 (1972).
- [4] R. Nuccitelli, U. Pliquett, N. Chen, W. Ford, R.J. Swanson, S.J. Beebe, J.F. Kolb and K.H. Schoenbach, Biochem. Biophys. Res. Comm. 343, 351 (2006).
- [5] S.B. Dev, D.P. Rabussay, G. Widera and G.A. Hofmann, IEEE Trans. Plasma Sci. **28**, 206 (2000).
- [6] S.J. Beebe, P.F. Blackmore, J. White, R.P. Joshi and K.H. Schoenbach, Physiol. Meas. **25**, 1077 (2004).
- [7] S. Tsukamoto, T. Maeda, M. Ikeda and H. Akiyama, Proc. 14th IEEE Int. Pulsed Power Conf., 2003, **2**, 1116 (2003).
- [8] K. Takaki, K. Kanesawa, N. Yamazaki, S. Mukaigawa, T. Fujiwara, K. Takahasi, K. Yamasita and K. Nagane, Proc. 16th IEEE Int. Pulsed Power Conf., 2007, 2, 1253 (2007).
- [9] C.J. Eing, S. Bonnet, M. Pacher, H. Puchta and W. Frey, IEEE Trans. Dielectr. Electr. Insulat. 16, 1322 (2009).
- [10] D. Wang, X. Lin, K. Hirayama, Z. Li, O. Takeshi, W. Zhang, T. Namihira, S. Katsuki, H. Takano, S. Takio and H. Akiyama, IEEE Trans. Plasma Sci. 38, 39 (2010).
- [11] N. Nomura, M. Yano, S. Katsuki, H. Akiyama, K. Abe and S-I. Abe, IEEE Trans. Dielectr. Electr. Insulat. 16, 1288

(2008)

- [12] M. Yano, K. Abe, H. Akiyama, S. Katsuki, IEEE Trans. Dielectr. Electr. Insulat. *in print* (2011).
- [13] M. Washizu and O. Kurosawa, IEEE Trans. Industry Applications 26, 1165 (1990).
- [14] Y.F. Li, T. Kaneko and R. Hatakeyama, Small 6, 729 (2010).
- [15] K.H. Schoenbach, A. Munyanyi, Y. Sun, L.H. Greene, R.P. Joshi, J.T. Camp and J.C. Collin, Proc. 2011 Int. Bioelectrics Symp. 12 (2011).
- [16] K.H. Schoenbach *et al.*, IEEE Trans. Dielectr. Electr. Insulat. 14, 1088 (2007).
- [17] K. Morotomi-Yano, Y. Uemura, S. Katsuki, H. Akiyama and K-I. Yano, Biochem. Biophys. Res. Comm. 408, 471 (2011).

- [18] M. Yano, M. Yano, K. Abe, S. Katsuki and H. Akiyama, Proc. 18th IEEE Int. Pulsed Power Conf., 2011, *in print* (2007).
- [19] S. Katsuki, K. Mitsutake, M. Yano, H. Akiyama, T. Slauto and H. Kai, IEEE Trans. Dielectr. Electr. Insulat. 17, 678 (2010).
- [20] R. Heller, K.H. Schoenbach, J.F. Kolb, S. Xiao, S.J. Beebe, M. Malik, B. Hargrave and L. Heller, Proc. 2011 Int. Bioelectrics Symp. 5 (2011).
- [21] G. Sersa, I. Edhemovic, E. Brecelj, D. Miklavcic, B. Kos, A. Zupanic, B. Mali and J. Tomaz, Proc. 2011 Bioelectrics Symp. 15 (2011).