Special Topic Article
Recent Progress and Issues of Tungsten Research for Fusion Reactor Plasma and Divertor
1. Introduction ... ASAKURA Nobuyuki 575
2. Progress in Transport and Control Studies of Tungsten in Tokamak Experiments ... ASAKURA Nobuyuki and NAKANO Tomohide 577
3. Progress and Issues in PWI Studies of Tungsten for ITER TOKITANI Masayuki and UEDA Yoshi 591
4. Progress and Issues of Modeling of the Tungsten Impurity Transport ... IOSHINO Kazuo 600
5. Latest Status of Manufacturing Activity of ITER Divertor and Engineering Issues on Tungsten Divertor ... SUZUKI Satoshi 607
6. Research Issues of Tungsten Control for a Fusion Reactor ... ASAKURA Nobuyuki 615

Special Topic Article
System Designs of a Magnetic Confinement Fusion Reactor using System Codes
1. Introduction .. OGAWA Yuichi 620
2. System Designs for a Tokamak Fusion Reactor ... HIWATARI Ryoji 622
3. System Designs for a Helical Fusion Reactor ... GOTO Takuya and SAGARA Aki 628
5. Conclusion .. OGAWA Yuichi 640

Contributed Paper
Simulation Code Development of Laser Ablation on Ignition of Rocket Engine by Laser
... FURUKAWA Hiroyuki, FUJITA Kazuhisa and MORIYA Shinichi 642

PFR Abstracts ... 650

Information ... 651

Plasma & Fusion Calendar ... 657

Announcement ... 659

Cover
The behavior of Hα profile after supersonic molecular beam injection (SMBI) was measured in Heliotron J. Comparison between SMBI and gas puffing was carried out under the same ejected amount by using a shutter shown in (a). (b) and (c) show the time evolutions. The radial profiles are shown in (d). In SMBI case, the beam penetrates toward the magnetic axis, and the intensity outside the torus is higher than that inside the torus. The behavior of electron density profile was also measured using a newly developed microwave AM reflectometer. (Kiyofumi MUKAI et al., Plasma and Fusion Research Vol. 6, 1402111 (2011) http://www.jspfor.jp/PFR/)